复杂条件下视频运动目标检测和跟踪_第1页
复杂条件下视频运动目标检测和跟踪_第2页
复杂条件下视频运动目标检测和跟踪_第3页
复杂条件下视频运动目标检测和跟踪_第4页
复杂条件下视频运动目标检测和跟踪_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

复杂条件下视频运动目标检测和跟踪一、本文概述Overviewofthisarticle随着计算机视觉技术的飞速发展,视频运动目标检测和跟踪已成为许多领域,如智能监控、人机交互、自动驾驶等的关键技术。然而,在实际应用中,视频序列往往受到多种复杂条件的影响,如光照变化、遮挡、噪声干扰等,这些因素极大地增加了目标检测和跟踪的难度。因此,研究复杂条件下视频运动目标的有效检测和跟踪方法具有重要的理论价值和实际应用意义。Withtherapiddevelopmentofcomputervisiontechnology,videomotiontargetdetectionandtrackinghavebecomekeytechnologiesinmanyfields,suchasintelligentmonitoring,human-computerinteraction,autonomousdriving,etc.However,inpracticalapplications,videosequencesareoftenaffectedbyvariouscomplexconditions,suchaslightingchanges,occlusion,noiseinterference,etc.Thesefactorsgreatlyincreasethedifficultyofobjectdetectionandtracking.Therefore,studyingeffectivedetectionandtrackingmethodsforvideomotiontargetsundercomplexconditionshasimportanttheoreticalvalueandpracticalapplicationsignificance.本文旨在探讨和研究在复杂条件下视频运动目标的检测和跟踪技术。文章将对现有的目标检测和跟踪算法进行全面的回顾和分析,总结其优缺点和适用场景。在此基础上,文章将深入探讨和研究针对复杂条件的目标检测和跟踪算法,包括但不限于基于深度学习的目标检测算法、抗遮挡和光照变化的跟踪算法等。Thisarticleaimstoexploreandstudythedetectionandtrackingtechniquesofvideomovingtargetsundercomplexconditions.Thearticlewillcomprehensivelyreviewandanalyzeexistingobjectdetectionandtrackingalgorithms,summarizetheiradvantages,disadvantages,andapplicablescenarios.Onthisbasis,thearticlewilldelveintoandstudyobjectdetectionandtrackingalgorithmsforcomplexconditions,includingbutnotlimitedtodeeplearningbasedobjectdetectionalgorithms,antiocclusionandlightingchangetrackingalgorithms,etc.本文还将通过大量的实验验证所提出算法的有效性和鲁棒性,并对比和分析不同算法在复杂条件下的性能表现。文章将对未来的研究方向和应用前景进行展望,以期为相关领域的研究人员提供有益的参考和启示。Thisarticlewillalsoverifytheeffectivenessandrobustnessoftheproposedalgorithmthroughalargenumberofexperiments,andcompareandanalyzetheperformanceofdifferentalgorithmsundercomplexconditions.Thearticlewillprovideprospectsforfutureresearchdirectionsandapplicationprospects,inordertoprovideusefulreferencesandinsightsforresearchersinrelatedfields.二、相关工作Relatedwork在视频处理和分析领域,运动目标检测和跟踪一直是研究的热点和难点。随着计算机视觉技术的不断发展,越来越多的方法被提出并应用于实际场景中。本节将回顾和分析与本文研究内容相关的工作,包括传统的运动目标检测与跟踪方法、深度学习在运动目标检测与跟踪中的应用,以及复杂条件下视频运动目标检测与跟踪面临的挑战。Inthefieldofvideoprocessingandanalysis,motionobjectdetectionandtrackinghavealwaysbeenahotanddifficultresearchtopic.Withthecontinuousdevelopmentofcomputervisiontechnology,moreandmoremethodsareproposedandappliedinpracticalscenarios.Thissectionwillreviewandanalyzetheworkrelatedtotheresearchcontentofthisarticle,includingtraditionalmotionobjectdetectionandtrackingmethods,theapplicationofdeeplearninginmotionobjectdetectionandtracking,andthechallengesfacedbyvideomotionobjectdetectionandtrackingundercomplexconditions.传统的运动目标检测与跟踪方法主要基于背景建模、光流法、帧间差分等方法。这些方法在简单背景下能够取得较好的效果,但在复杂条件下,如光照变化、遮挡、动态背景等,其性能往往受到严重影响。为了解决这个问题,研究者们开始尝试将深度学习技术引入运动目标检测与跟踪领域。Thetraditionalmethodsofmotiontargetdetectionandtrackingaremainlybasedonbackgroundmodeling,opticalflowmethod,interframedifference,andothermethods.Thesemethodscanachievegoodresultsinsimplebackgrounds,buttheirperformanceisoftenseverelyaffectedincomplexconditionssuchaslightingchanges,occlusion,dynamicbackgrounds,etc.Toaddressthisissue,researchershavebeguntoattempttointroducedeeplearningtechniquesintothefieldofmotionobjectdetectionandtracking.深度学习,特别是卷积神经网络(CNN)和循环神经网络(RNN),为视频处理和分析提供了新的思路。通过训练大量的数据,深度学习模型能够学习到丰富的特征表示和时空上下文信息,从而在复杂条件下实现更准确的运动目标检测与跟踪。近年来,基于深度学习的目标检测算法,如YOLO、SSD、FasterR-CNN等,在速度和精度上都取得了显著的进展。同时,一些研究者还将深度学习应用于光流估计、背景建模等任务,进一步提高了运动目标检测与跟踪的性能。Deeplearning,especiallyConvolutionalNeuralNetworks(CNN)andRecurrentNeuralNetworks(RNN),providesnewideasforvideoprocessingandanalysis.Bytrainingalargeamountofdata,deeplearningmodelscanlearnrichfeaturerepresentationsandspatiotemporalcontextualinformation,therebyachievingmoreaccuratemotiontargetdetectionandtrackingundercomplexconditions.Inrecentyears,deeplearningbasedobjectdetectionalgorithmssuchasYOLO,SSD,FasterR-CNN,etc.havemadesignificantprogressinbothspeedandaccuracy.Meanwhile,someresearchershavealsoapplieddeeplearningtotaskssuchasopticalflowestimationandbackgroundmodeling,furtherimprovingtheperformanceofmotiontargetdetectionandtracking.然而,尽管深度学习在运动目标检测与跟踪中取得了显著的成果,但在复杂条件下仍面临诸多挑战。例如,当目标受到严重遮挡或光照变化时,深度学习模型可能无法准确提取目标的特征;当场景中存在多个相似目标时,如何实现准确的目标跟踪也是一个亟待解决的问题。因此,如何在复杂条件下实现鲁棒的运动目标检测与跟踪仍是当前研究的重点。However,althoughdeeplearninghasachievedsignificantresultsinmotiontargetdetectionandtracking,itstillfacesmanychallengesundercomplexconditions.Forexample,whenthetargetisseverelyoccludedorchangesinlighting,deeplearningmodelsmaynotbeabletoaccuratelyextractthefeaturesofthetarget;Whentherearemultiplesimilartargetsinthescene,achievingaccuratetargettrackingisalsoanurgentproblemtobesolved.Therefore,howtoachieverobustmotiontargetdetectionandtrackingundercomplexconditionsisstillafocusofcurrentresearch.本文旨在研究复杂条件下视频运动目标检测与跟踪的关键技术。通过深入分析传统方法和深度学习方法的优缺点,本文提出了一种基于深度学习的运动目标检测与跟踪算法,旨在解决复杂条件下目标检测与跟踪面临的难题。本文还将对所提出算法的性能进行实验验证,并与现有方法进行对比分析,以展示其在复杂条件下的优越性和实用性。Thisarticleaimstostudythekeytechnologiesofvideomotionobjectdetectionandtrackingundercomplexconditions.Throughin-depthanalysisoftheadvantagesanddisadvantagesoftraditionalmethodsanddeeplearningmethods,thispaperproposesamotionobjectdetectionandtrackingalgorithmbasedondeeplearning,aimingtosolvethedifficultiesfacedbyobjectdetectionandtrackingundercomplexconditions.Thisarticlewillalsoconductexperimentalverificationontheperformanceoftheproposedalgorithmandcompareitwithexistingmethodstodemonstrateitssuperiorityandpracticalityundercomplexconditions.三、复杂条件下视频运动目标检测算法Videomotionobjectdetectionalgorithmundercomplexconditions在复杂条件下进行视频运动目标检测是一个具有挑战性的任务,它涉及到从复杂多变的背景中准确识别并提取出运动目标的信息。这一过程涉及多种算法和技术的结合,包括但不限于背景建模、特征提取、目标分类以及后处理优化等步骤。Videomotiontargetdetectionundercomplexconditionsisachallengingtaskthatinvolvesaccuratelyidentifyingandextractinginformationaboutmotiontargetsfromcomplexandever-changingbackgrounds.Thisprocessinvolvesthecombinationofmultiplealgorithmsandtechnologies,includingbutnotlimitedtobackgroundmodeling,featureextraction,targetclassification,andpost-processingoptimization.背景建模是复杂条件下视频运动目标检测的基础。由于复杂环境可能包含光照变化、动态背景、遮挡等因素,因此背景建模需要具有足够的鲁棒性和自适应性。常见的背景建模方法包括基于统计模型的建模、基于学习的建模以及基于深度学习的建模等。这些方法通过对背景像素进行建模,从而能够区分出前景目标和背景。Backgroundmodelingisthefoundationofvideomotionobjectdetectionundercomplexconditions.Duetothefactthatcomplexenvironmentsmaycontainfactorssuchaslightingchanges,dynamicbackgrounds,andocclusion,backgroundmodelingneedstohavesufficientrobustnessandadaptability.Commonbackgroundmodelingmethodsincludestatisticalmodel-basedmodeling,learningbasedmodeling,anddeeplearningbasedmodeling.Thesemethodscandistinguishforegroundtargetsfrombackgroundbymodelingbackgroundpixels.特征提取是视频运动目标检测的关键步骤。在复杂条件下,特征提取需要考虑到光照变化、噪声干扰以及运动模糊等因素。常用的特征提取方法包括颜色特征、纹理特征、形状特征以及运动特征等。这些方法可以从视频帧中提取出有用的信息,为后续的目标分类提供有效的输入。Featureextractionisacrucialstepinvideomotionobjectdetection.Undercomplexconditions,featureextractionneedstoconsiderfactorssuchaslightingchanges,noiseinterference,andmotionblur.Commonfeatureextractionmethodsincludecolorfeatures,texturefeatures,shapefeatures,andmotionfeatures.Thesemethodscanextractusefulinformationfromvideoframesandprovideeffectiveinputforsubsequenttargetclassification.目标分类是视频运动目标检测的核心任务。在复杂条件下,目标分类需要处理类间差异小、类内差异大以及噪声干扰等问题。为此,可以采用多种分类器进行组合使用,如支持向量机、随机森林、卷积神经网络等。这些分类器通过对提取的特征进行学习和分类,从而能够准确地识别出运动目标。Targetclassificationisthecoretaskofvideomotionobjectdetection.Undercomplexconditions,targetclassificationneedstodealwithissuessuchassmallinterclassdifferences,largeintraclassdifferences,andnoiseinterference.Forthispurpose,multipleclassifierscanbeusedincombination,suchassupportvectormachines,randomforests,convolutionalneuralnetworks,etc.Theseclassifierscanaccuratelyidentifymovingtargetsbylearningandclassifyingtheextractedfeatures.后处理优化是提升视频运动目标检测性能的重要手段。在复杂条件下,后处理优化可以进一步消除误检和漏检,提高检测的准确性和稳定性。常见的后处理优化方法包括形态学处理、帧间融合、轨迹平滑等。这些方法通过对检测结果进行进一步的处理和优化,从而得到更加准确和可靠的运动目标信息。Postprocessingoptimizationisanimportantmeanstoimprovetheperformanceofvideomotionobjectdetection.Undercomplexconditions,post-processingoptimizationcanfurthereliminatefalsepositivesandmisseddetections,improvingtheaccuracyandstabilityofdetection.Commonpost-processingoptimizationmethodsincludemorphologicalprocessing,interframefusion,trajectorysmoothing,etc.Thesemethodsfurtherprocessandoptimizethedetectionresultstoobtainmoreaccurateandreliablemotiontargetinformation.复杂条件下视频运动目标检测算法需要综合考虑背景建模、特征提取、目标分类以及后处理优化等多个方面。通过不断优化和改进算法,可以提高视频运动目标检测的准确性和鲁棒性,为视频监控、智能交通、人机交互等领域的应用提供有力支持。Undercomplexconditions,videomotionobjectdetectionalgorithmsneedtocomprehensivelyconsidermultipleaspectssuchasbackgroundmodeling,featureextraction,objectclassification,andpost-processingoptimization.Bycontinuouslyoptimizingandimprovingalgorithms,theaccuracyandrobustnessofvideomotiontargetdetectioncanbeimproved,providingstrongsupportforapplicationsinfieldssuchasvideosurveillance,intelligenttransportation,andhuman-computerinteraction.四、复杂条件下视频运动目标跟踪算法Videomotiontargettrackingalgorithmundercomplexconditions在复杂条件下,视频运动目标的跟踪是一项极具挑战性的任务。由于光照变化、遮挡、噪声、动态背景以及摄像机抖动等因素的存在,使得目标跟踪算法需要具备更强的鲁棒性和适应性。为此,本文提出了一种基于深度学习的复杂条件下视频运动目标跟踪算法。Trackingvideomovingtargetsundercomplexconditionsisahighlychallengingtask.Duetofactorssuchaschangesinlighting,occlusion,noise,dynamicbackground,andcamerashake,targettrackingalgorithmsneedtohavestrongerrobustnessandadaptability.Therefore,thisarticleproposesavideomotiontargettrackingalgorithmbasedondeeplearningundercomplexconditions.该算法首先利用深度学习模型对视频帧进行特征提取。具体来说,我们使用卷积神经网络(CNN)来提取目标的颜色、纹理和形状等特征信息。然后,结合目标的运动信息,如光流和轨迹,构建一个联合特征表示,用于描述目标的运动状态。Thisalgorithmfirstutilizesdeeplearningmodelstoextractfeaturesfromvideoframes.Specifically,weuseConvolutionalNeuralNetworks(CNNs)toextractfeatureinformationsuchascolor,texture,andshapeofthetarget.Then,combiningthemotioninformationofthetarget,suchasopticalflowandtrajectory,ajointfeaturerepresentationisconstructedtodescribethemotionstateofthetarget.在跟踪过程中,我们采用了一种基于粒子滤波的跟踪框架。粒子滤波是一种基于概率密度函数估计的序贯蒙特卡洛方法,它通过非参数化的方式逼近任意状态的后验概率密度,从而实现对目标状态的估计。在本文中,我们将粒子滤波与深度学习相结合,利用深度学习提取的特征信息来指导粒子滤波的采样过程,从而实现对目标的准确跟踪。Duringthetrackingprocess,weadoptedatrackingframeworkbasedonparticlefiltering.ParticlefilteringisasequentialMonteCarlomethodbasedonprobabilitydensityfunctionestimation,whichapproximatestheposteriorprobabilitydensityofanystateinanonparametricmanner,therebyachievingestimationofthetargetstate.Inthisarticle,wecombineparticlefilteringwithdeeplearningandusethefeatureinformationextractedbydeeplearningtoguidethesamplingprocessofparticlefiltering,therebyachievingaccuratetrackingoftargets.为了应对复杂条件下的挑战,我们还引入了一种在线学习机制。该机制允许算法在跟踪过程中不断学习和更新目标模型,以适应目标外观的变化。具体来说,我们利用当前帧的目标信息来更新目标模型,以提高算法对目标外观变化的适应能力。Toaddressthechallengesundercomplexconditions,wehavealsointroducedanonlinelearningmechanism.Thismechanismallowsthealgorithmtocontinuouslylearnandupdatethetargetmodelduringthetrackingprocesstoadapttochangesintheappearanceofthetarget.Specifically,weusethetargetinformationofthecurrentframetoupdatethetargetmodel,inordertoimprovethealgorithm'sadaptabilitytochangesintheappearanceofthetarget.我们还采用了一种多尺度跟踪策略。由于目标在视频中的尺度可能会发生变化,因此,我们需要在不同的尺度上对目标进行跟踪。通过多尺度跟踪,我们可以更好地适应目标尺度的变化,从而提高算法的跟踪性能。Wealsoadoptedamulti-scaletrackingstrategy.Duetothepossibilityofchangesinthescaleofthetargetinthevideo,weneedtotrackthetargetatdifferentscales.Throughmulti-scaletracking,wecanbetteradapttochangesinthetargetscale,therebyimprovingthetrackingperformanceofthealgorithm.我们还设计了一种基于运动一致性的遮挡处理方法。当目标被遮挡时,我们可以通过分析目标的运动一致性来检测遮挡事件的发生,并采取相应的措施来恢复跟踪。具体来说,我们利用目标的运动信息来构建一个运动模型,并通过比较当前帧与前一帧的运动信息来检测遮挡事件的发生。当检测到遮挡事件时,我们会调整粒子的分布以重新找到被遮挡的目标,从而恢复跟踪。Wealsodesignedanocclusionprocessingmethodbasedonmotionconsistency.Whenthetargetisoccluded,wecandetecttheoccurrenceofocclusioneventsbyanalyzingthemotionconsistencyofthetarget,andtakecorrespondingmeasurestorestoretracking.Specifically,weusethemotioninformationofthetargettoconstructamotionmodelanddetecttheoccurrenceofocclusioneventsbycomparingthemotioninformationofthecurrentframewiththepreviousframe.Whenanocclusioneventisdetected,weadjustthedistributionofparticlestorediscovertheoccludedtargetandrestoretracking.本文提出的复杂条件下视频运动目标跟踪算法结合了深度学习、粒子滤波、在线学习和多尺度跟踪等多种技术,旨在提高算法在复杂环境下的鲁棒性和适应性。实验结果表明,该算法在各种复杂条件下均取得了良好的跟踪效果,为视频运动目标跟踪领域的研究提供了新的思路和方法。Thevideomotiontargettrackingalgorithmproposedinthisarticlecombinesvarioustechnologiessuchasdeeplearning,particlefiltering,onlinelearning,andmulti-scaletrackingundercomplexconditions,aimingtoimprovetherobustnessandadaptabilityofthealgorithmincomplexenvironments.Theexperimentalresultsshowthatthealgorithmhasachievedgoodtrackingperformanceundervariouscomplexconditions,providingnewideasandmethodsforresearchinthefieldofvideomotiontargettracking.五、综合实验与性能评估Comprehensiveexperimentsandperformanceevaluation为了验证本文提出的复杂条件下视频运动目标检测和跟踪算法的有效性,我们进行了一系列综合实验,并对算法的性能进行了全面评估。Inordertoverifytheeffectivenessofthevideomotionobjectdetectionandtrackingalgorithmproposedinthisarticleundercomplexconditions,weconductedaseriesofcomprehensiveexperimentsandcomprehensivelyevaluatedtheperformanceofthealgorithm.实验数据集包含了多种复杂场景,如光照变化、遮挡、摄像头抖动、背景干扰等。我们采用了公开数据集和自建数据集相结合的方式,以确保实验的广泛性和代表性。公开数据集包括PETS2TUD-Brussels和IVC等,自建数据集则模拟了多种实际场景,并进行了人工标注。Theexperimentaldatasetincludesvariouscomplexscenes,suchaslightingchanges,occlusion,camerashake,backgroundinterference,etc.Weadoptedacombinationofpublicandselfbuiltdatasetstoensurethebreadthandrepresentativenessoftheexperiment.ThepublicdatasetincludesPETS2TUDBrusselsandIVC,whiletheselfbuiltdatasetsimulatesvariouspracticalscenariosandismanuallyannotated.为了全面评估算法性能,我们采用了多种评估指标,包括准确率(Precision)、召回率(Recall)、F1分数、平均跟踪速度(FPS)以及跟踪成功率(SuccessRate)。这些指标能够综合反映算法在不同复杂条件下的表现。Tocomprehensivelyevaluatetheperformanceofthealgorithm,weusedvariousevaluationmetrics,includingaccuracy,recall,F1score,averagetrackingspeed(FPS),andtrackingsuccessrate.Theseindicatorscancomprehensivelyreflecttheperformanceofthealgorithmunderdifferentcomplexconditions.实验结果显示,本文提出的算法在复杂条件下表现出了良好的性能。在光照变化、遮挡等场景下,算法的准确率和召回率均保持在较高水平。同时,通过优化算法结构,平均跟踪速度也得到了显著提升,满足了实时性要求。Theexperimentalresultsshowthatthealgorithmproposedinthisarticleexhibitsgoodperformanceundercomplexconditions.Theaccuracyandrecallofthealgorithmremainatahighlevelinscenariossuchaslightingchangesandocclusion.Meanwhile,byoptimizingthealgorithmstructure,theaveragetrackingspeedhasalsobeensignificantlyimproved,meetingthereal-timerequirements.在摄像头抖动和背景干扰等复杂条件下,本文算法同样展现出了优秀的性能。通过引入背景建模和抖动补偿等策略,算法成功地克服了这些干扰因素,实现了准确的目标跟踪。Undercomplexconditionssuchascamerashakeandbackgroundinterference,thealgorithmpresentedinthispaperalsodemonstratesexcellentperformance.Byintroducingstrategiessuchasbackgroundmodelingandjittercompensation,thealgorithmsuccessfullyovercomestheseinterferencefactorsandachievesaccuratetargettracking.我们还对算法进行了鲁棒性测试。实验结果表明,本文算法在不同场景下均能保持较高的跟踪成功率,展现出良好的鲁棒性。Wealsoconductedrobustnesstestingonthealgorithm.Theexperimentalresultsshowthatthealgorithmproposedinthispapercanmaintainahightrackingsuccessrateindifferentscenarios,demonstratinggoodrobustness.通过综合实验与性能评估,验证了本文提出的复杂条件下视频运动目标检测和跟踪算法的有效性。该算法在多种复杂场景下均表现出了良好的性能,具有较高的准确率和实时性,为实际应用提供了有力支持。Theeffectivenessoftheproposedvideomotionobjectdetectionandtrackingalgorithmundercomplexconditionshasbeenverifiedthroughcomprehensiveexperimentsandperformanceevaluations.Thisalgorithmhasshowngoodperformanceinvariouscomplexscenarios,withhighaccuracyandreal-timeperformance,providingstrongsupportforpracticalapplications.我们也注意到在某些极端情况下,算法性能仍有提升空间。未来工作将致力于进一步优化算法结构,提高其在复杂条件下的鲁棒性和准确性。我们还将研究如何将该算法应用于更多实际场景,如智能交通、安防监控等领域,以推动相关技术的发展。Wealsonoticedthatinsomeextremecases,thereisstillroomforimprovementinalgorithmperformance.Futureworkwillfocusonfurtheroptimizingthealgorithmstructure,improvingitsrobustnessandaccuracyundercomplexconditions.Wewillalsostudyhowtoapplythisalgorithmtomorepracticalscenarios,suchasintelligenttransportation,securitymonitoring,andotherfields,topromotethedevelopmentofrelatedtechnologies.六、结论与展望ConclusionandOutlook本文围绕“复杂条件下视频运动目标检测和跟踪”这一核心议题进行了深入的理论探讨与实证分析。通过对现有算法与技术的系统梳理,结合具体的应用场景,本文揭示了复杂环境下目标检测与跟踪所面临的挑战与困难,并提出了一系列针对性的解决方案。Thisarticleconductsin-depththeoreticalexplorationandempiricalanalysisaroundthecoretopicof"videomotionobjectdetectionandtrackingundercomplexconditions".Throughasystematicreviewofexistingalgorithmsandtechnologies,combinedwithspecificapplicationscenarios,thisarticlerevealsthechallengesanddifficultiesfacedbyobjectdetectionandtrackingincomplexenvironments,andproposesaseriesoftargetedsolutions.在结论部分,本文的主要工作可概括为以下几点:详细分析了复杂环境下目标检测与跟踪的主要难点,包括光照变化、遮挡、动态背景等因素对目标特征提取和跟踪算法性能的影响。基于深度学习的目标检测算法在复杂环境下表现出了较好的鲁棒性和准确性,特别是在处理背景干扰和尺度变化等问题时优势显著。再次,针对复杂环境中的目标跟踪问题,本文探讨了多种跟踪算法的性能表现,并提出了结合多特征融合和在线学习机制的跟踪策略,有效提高了跟踪的稳定性和精度。Intheconclusionsection,themainworkofthisarticlecanbesummarizedasfollows:adetailedanalysisofthemaindifficultiesoftargetdetectionandtrackingincomplexenvironments,includingtheimpactoflightingchanges,occlusion,dynamicbackground,andotherfactorsontheperformanceoftargetfeatureextractionandtrackingalgorithms.Theobjectdetectionalgorithmbasedondeeplearninghasshowngoodrobustnessandaccuracyincomplexenvironments,especiallyindealingwithbackgroundinterferenceandscalechanges,withsignificantadvantages.Onceagain,inresponsetotheproblemoftargettrackingincomplexenvironments,thisarticleexplorestheperformanceofvarioustrackingalgorithmsandproposesatrackingstrategythat

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论