版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级数学下册第10章相交线、平行线与平移同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是()A.48°,72° B.72°,108°C.48°,72°或72°,108° D.80°,120°2、如图,已知直线,相交于O,平分,,则的度数是()A. B. C. D.3、如图,AC⊥BC,CD⊥AB,则点C到AB的距离是线段()的长度A.CD B.AD C.BD D.BC4、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为()A.30° B.40° C.50° D.60°5、直线、、、如图所示.若∠1=∠2,则下列结论错误的是()A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠56、若∠1与∠2是内错角,则它们之间的关系是()A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠27、下列说法中正确的是()A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点8、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为()A.125° B.115° C.105° D.95°9、如图,木工用图中的角尺画平行线的依据是()A.垂直于同一条直线的两条直线平行B.平行于同一条直线的两条直线平行C.同位角相等,两直线平行D.经过直线外一点,有且只有一条直线与这条直线平行10、如图,,能表示点到直线(或线段)的距离的线段有()A.五条 B.二条 C.三条 D.四条第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将一副三角板按如图所示的方式摆放,AC∥DF,BC与EF相交于点G,则∠CGF度数为_____度.2、填写推理理由如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.证明:∵EF∥AD∴∠2=________(______________)又∵∠1=∠2∴∠1=∠3________∴AB∥________(____________)∴∠BAC+________=180°(___________)又∵∠BAC=70°∴∠AGD=________3、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC.证明:∵(已知),∴(垂直的定义).∴________,∵(已知),∴________(依据1:________),∴(依据2:________).4、如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.5、如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为_____.三、解答题(5小题,每小题10分,共计50分)1、如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM=3.25米,PN=3.15米,PF=3.21米,则小明的成绩为_____米.(填具体数值)2、如图,OA⊥OB于点O,∠AOD:∠BOD=7:2,点D、O、E在同一条直线上,OC平分∠BOE,求∠COD的度数.3、如图,直线相交于点平分.(1)若,求∠BOD的度数;(2)若,求∠DOE的度数.4、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:(1)如图a,在线段AB上找一点P,使PC+PD最小.(2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.(3)如图c,画线段CM∥AB.要求点M在格点上.5、直线、相交于点,平分,,,求与的度数.-参考答案-一、单选题1、B【分析】根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.【详解】解:∵两个角的两边两两互相平行,∴这两个角可能相等或者两个角互补,∵一个角的等于另一个角的,∴这两个角互补,设其中一个角为x,则另一个角为,根据题意可得:,解得:,,故选:B.【点睛】题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.2、C【分析】先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.【详解】解:∵OA平分∠EOC,∠EOC=100°,∴∠AOC=∠EOC=50°,∴∠BOC=180°﹣∠AOC=130°.故选:C.【点睛】本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.3、A【分析】根据和点到直线的距离的定义即可得出答案.【详解】解:,点到的距离是线段的长度,故选:A.【点睛】本题考查了点到直线的距离,理解定义是解题关键.4、B【分析】由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.【详解】解:如图所示:∵∠1=50°,∠ACB=90°,∴∠BCD=180°﹣∠1﹣∠BCD=40°,∵a∥b,∴∠2=∠BCD=40°.故选:B.【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.5、D【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.6、D【分析】根据内错角角的定义和平行线的性质判断即可.【详解】解:∵只有两直线平行时,内错角才可能相等,∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能,故选D.【点睛】本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.7、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.8、A【分析】利用互余角的概念与邻补角的概念解答即可.【详解】解:∵∠1=35°,∠AOC=90°,∴∠BOC=∠AOC−∠1=55°.∵点B,O,D在同一条直线上,∴∠2=180°−∠BOC=125°.故选:A.【点睛】本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.9、C【分析】由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.【详解】由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.故选:C【点睛】本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.10、A【分析】直接利用点到直线的距离的定义分析得出答案.【详解】解:线段的长是点到的距离,线段的长是点到的距离,线段的长是点到的距离,线段的长是点到的距离,线段的长是点到的距离,故图中能表示点到直线距离的线段共有五条.故选:A.【点睛】此题考查了点到直线的距离.解题的关键是掌握点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.二、填空题1、30【分析】先证明再证明再利用平行线的性质与对顶角的性质可得答案.【详解】解:如图,记交于点由题意得:故答案为:【点睛】本题考查的是平行线的判定与性质,掌握“两直线平行,同位角相等与同旁内角互补,两直线平行”是解本题的关键.2、∠3两直线平行,同位角相等等量代换DG内错角相等,两直线平行∠AGD两直线平行,同旁内角互补110°【分析】根据平行线的判定与性质,求解即可.【详解】∵EF∥AD,∴∠2=∠3,(两直线平行,同位角相等)又∵∠1=∠2,∴∠1=∠3,(等量代换)∴AB∥DG.(内错角相等,两直线平行)∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)又∵∠BAC=70°,∴∠AGD=110°.故答案是:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,110°【点睛】此题考查了平行线的判定与性质,解题的关键是掌握平行线的判定方法与性质.3、同角的余角相等内错角相等,两直线平行【分析】根据垂直的定义及平行线的判定定理即可填空.【详解】∵(已知),∴(垂直的定义).∴,∵(已知),∴(同角的余角相等),∴(内错角相等,两直线平行).故答案为:;;同角的余角相等;内错角相等,两直线平行.【点睛】此题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”是解题的关键.4、【分析】延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;【详解】延长AB,交两平行线与C、D,∵直线l1∥l2,∠A=125°,∠B=85°,∴,,,∴,∴,又∵∠1比∠2大4°,∴,∴,∴;故答案是.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.5、50°【分析】由AB∥CD∥EF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.【详解】解:∵AB∥CD∥EF,∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,∴∠ECD=180°-∠CEF=75°,∴∠BCE=∠BCD-∠ECD=50°,故答案为:50°.【点睛】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.三、解答题1、3.15【分析】根据跳远的距离应该是起跳板到P点的垂线段的长度进行求解即可【详解】解:由图形可知,小明的跳远成绩应该为PN的长度,即3.15米,故答案为:3.15.【点睛】本题主要考查了点到直线的距离,熟练掌握点到直线的距离的定义是解题的关键.2、100°【分析】由垂直的定义结合两角的比值可求解∠BOD的度数,即可求得∠BOE的度数,再利用角平分线的定义可求得∠BOC的度数,进而可求解∠COD的度数.【详解】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOD:∠BOD=7:2,∴∠BOD=∠AOB=20°,∴∠BOE=180°﹣∠BOD=160°.∵OC平分∠BOE,∴∠BOC=∠BOE=80°,∴∠COD=∠BOC+∠BOD=80°+20°=100°.【点睛】本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD的度数是解题的关键.3、(1)20°;(2)60°【分析】(1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;(2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC=60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.【详解】解:(1)∵∠AOE=40°,∴∠AOF=180°-∠AOE=140°,∵OC平分∠AOF,∴∠AOC=∠AOF=70°,∵OA⊥OB,∴∠AOB=90°,∴∠BOD=180°-∠AOB-∠AOC=20°;(2)∵∠BOE=30°,OA⊥OB,∴∠AOE=60°,∴∠AOF=180°-∠AOE=120°,∵OC平分∠AOF,∴∠AOC=∠AOF=60°,∴∠COE=∠AOE+∠AOC=60°+60°=120°,∴∠DOE=180°-∠COE=60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.4、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;(2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;(3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.【详解】解:(1)如图a,点P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2施工工艺控制标准图示-电仪篇
- 财务会计知识点
- 石河子大学《体能训练理论与方法》2022-2023学年第一学期期末试卷
- 石河子大学《平面设计基础》2022-2023学年第一学期期末试卷
- 石河子大学《教育研究方法》2022-2023学年第一学期期末试卷
- 沈阳理工大学《体育》2022-2023学年第一学期期末试卷
- 沈阳理工大学《机械制造技术基础》2021-2022学年第一学期期末试卷
- 沈阳理工大学《高级人工智能》2021-2022学年期末试卷
- 关于向政府请示履行合同的请示书
- 国外销售药品合同
- 燃气巡线员专业知识考试题库(附答案)
- 《如何做一名好教师》课件
- CORELDRAW 室内平面布置图课件
- WMT8-2022二手乘用车出口质量要求
- 退役军人技能培训课件
- 结构力学试卷西南交通大学期中答案期中考试
- 广东省佛山市2022-2023学年高二上学期期末数学试题(学生版+解析)
- 药疹的健康宣教
- 矿井水害综合监测预警系统通用技术条件
- 财务管理的财务财务数字化转型
- 直线与圆的位置关系-省赛一等奖
评论
0/150
提交评论