




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
资料整理资料整理资料整理第二章方程(组)与不等式(组)真题测试(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列方程中,是一元一次方程的是A. B.C. D.【答案】B
【解析】对于A,的未知数的最高次数是2次,不是一元一次方程,故A错误;对于B,符合一元一次方程的定义,故B正确;对于C,是二元一次方程,故C错误;对于D,,分母中含有未知数,是分式方程,故D错误.故选B.【点睛】本题考查了一元一次方程,解答此题明确一元一次方程的定义是关键.一元一次方程是指只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程就叫做一元一次方程.据此逐项分析再选择即可.2.(2023·新疆·统考中考真题)用配方法解一元二次方程,配方后得到的方程是(
)A. B. C. D.【答案】D【分析】方程两边同时加上一次项系数一半的平方即计算即可.【详解】∵,∴,∴,∴,故选:D.【点睛】本题考查了配方法,熟练掌握配方法的基本步骤是解题的关键.3.(2023·上海·统考中考真题)在分式方程中,设,可得到关于y的整式方程为(
)A. B. C. D.【答案】D【分析】设,则原方程可变形为,再化为整式方程即可得出答案.【详解】解:设,则原方程可变形为,即;故选:D.【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.4.(2022·浙江杭州)已知a,b,c,d是实数,若,,则(
)A. B. C. D.【答案】A【分析】根据不等式的基本性质,即可求解.【详解】解:∵,∴,∵,∴.故选:A【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.5.(2020·湖北恩施?中考真题)在实数范围内定义运算“☆”:,例如:.如果,则的值是().A. B.1 C.0 D.2【答案】C【解析】【分析】根据题目中给出的新定义运算规则进行运算即可求解.【详解】解:由题意知:,又,∴,∴.故选:C.【点睛】本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解即可.6.(2020·四川遂宁·中考真题)关于x的分式方程﹣=1有增根,则m的值()A.m=2 B.m=1 C.m=3 D.m=﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m的值即可.【解析】解:去分母得:m+3=x﹣2,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.7.(2022·湖南衡阳)不等式组的解集在数轴上表示正确的是(
)A. B.C. D.【答案】A【分析】先分别求出各不等式的解集,再求其公共解集即可.【详解】解不等式①得:解不等式②得:不等式组的解集为.故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2020·青海中考真题)根据图中给出的信息,可得正确的方程是()A. B.C. D.【答案】A【解析】【分析】根据题意可得相等关系的量为“水的体积”,然后利用圆柱体积公式列出方程即可.【详解】解:大量筒中的水的体积为:,小量筒中的水的体积为:,则可列方程为:.故选A.【点睛】本题主要考查列方程,解此题的关键在于准确找到题中相等关系的量,然后利用圆柱的体积公式列出方程即可.9.(2023·四川眉山·统考中考真题)关于x的一元二次方程有两个不相等的实数根,则m的取值范围是(
)A. B. C. D.【答案】D【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x的一元二次方程有两个不相等的实数根,∴,∴,故选:D.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程,若,则方程有两个不相等的实数根,若,则方程有两个相等的实数根,若,则方程没有实数根.10.(2023·云南·统考中考真题)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是米/分,则下列方程正确的是(
)A. B. C. D.【答案】D【分析】设乙同学的速度是米/分,根据乙同学比甲同学提前4分钟到达活动地点,列出方程即可.【详解】解∶设乙同学的速度是米/分,可得:故选:D.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.二、填空题(本大题共10小题,每小题3分,共30分)11.(2020·湖北中考真题)对于实数,定义运算.若,则_____.【答案】【解析】【分析】根据给出的新定义分别求出与的值,根据得出关于a的一元一次方程,求解即可.【详解】解:∵,∴,,∵,∴,解得,故答案为:.【点睛】本题考查解一元一次方程、新定义下实数的运算等内容,理解题干中给出的新定义是解题的关键.12.(2023·上海·统考中考真题)已知关于x的一元二次方程没有实数根,那么a的取值范围是________.【答案】【分析】根据一元二次方程根的判别式可进行求解.【详解】解:∵关于x的一元二次方程没有实数根,∴,解得:;故答案为:.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.13.(2023·黑龙江·统考中考真题)关于的不等式组有3个整数解,则实数的取值范围是__________.【答案】/【分析】解不等式组,根据不等式组有3个整数解得出关于m的不等式组,进而可求得的取值范围.【详解】解:解不等式组得:,∵关于的不等式组有3个整数解,∴这3个整数解为,,,∴,解得:,故答案为:.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,正确得出关于m的不等式组是解题的关键.14.(2020·黑龙江牡丹江?中考真题)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打________折.【答案】八【解析】【分析】打折销售后要保证打折后利率为20%,因而可以得到不等关系为:利润率=20%,设可以打x折,根据不等关系列出不等式求解即可.【详解】解:设应打x折,
则根据题意得:(180×x×10%-120)÷120=20%,
解得:x=8.
故商店应打八折.
故答案为:八.【点睛】本题考查一元一次方程的实际应用,解题关键是读懂题意,找到符合题意的等量关系式,同时要注意掌握利润率的计算方法.15.(2023·湖南常德·统考中考真题)若关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.【答案】【分析】若一元二次方程有两个不相等的实数根,则根的判别式,建立关于k的不等式,解不等式即可得出答案.【详解】解:∵关于x的方程有两个不相等的实数根,∴,解得.故答案为:.【点睛】此题考查了根的判别式.一元二次方程的根与有如下关系:(1)⇔方程有两个不相等的实数根;(2)⇔方程有两个相等的实数根;(3)⇔方程没有实数根.16.(2023·浙江台州·统考中考真题)3月12日植树节期间,某校环保小卫士组织植树活动.第一组植树12棵;第二组比第一组多6人,植树36棵;结果两组平均每人植树的棵数相等,则第一组有________人.【答案】3【分析】审题确定等量关系:第一组平均每人植树棵数=第二组平均每人植树棵数,列方程求解,注意检验.【详解】设第一组有x人,则第二组有人,根据题意,得去分母,得解得,经检验,是原方程的根.故答案为:3.【点睛】本题考查分式方程的应用,审题明确等量关系是解题的关键,注意分式方程的验根.17.(2020·湖北省直辖县级单位·中考真题)篮球联赛中,每玚比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.【答案】9【分析】设该对胜x场,则负14-x场,然后根据题意列一元一次方程解答即可.【解析】解:设该对胜x场由题意得:2x+(14-x)=23,解得x=9.故答案为9.【点睛】本题考查了一元一次方程的应用,弄清题意、设出未知数、找准等量关系、列出方程是解答本题的关键.18.(2023·四川内江·统考中考真题)已知a、b是方程的两根,则___________.【答案】【分析】利用一元二次方程的解的定义和根与系数的关系,可得,从而得到,然后代入,即可求解.【详解】解:∵a,b是方程的两根,∴,∴,∴.故答案为:.【点睛】本题主要考查了一元二次方程的解的定义和根与系数的关系,熟练掌握一元二次方程的解的定义和根与系数的关系是解题的关键.19.(2018·山东泰安·中考模拟)若关于的不等式组有解,则实数的取值范围是________【答案】a>4【分析】解出不等式组的解集,根据已知不等式组有解,可求出a的取值范围.【解析】解:由①得x>2,由②得x<,∵不等式组有解,∴解集应是2<x<,则>2,即a>4实数a的取值范围是a>4.【点睛】本题考查的是求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.(2023·重庆·统考中考真题)某新建工业园区今年六月份提供就业岗位个,并按计划逐月增长,预计八月份将提供岗位个.设七、八两个月提供就业岗位数量的月平均增长率为,根据题意,可列方程为___________.【答案】【分析】设七、八两个月提供就业岗位数量的月平均增长率为,根据题意列出一元二次方程,即可求解.【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为,根据题意得,,故答案为:.【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.三、解答题(本大题共11小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(2022·湖北宜昌)解不等式,并在数轴上表示解集.【答案】,在数轴上表示解集见解析【分析】通过去分母,去括号,移项,系数化为1求得,在数轴上表示解集即可.【详解】解:去分母,得,去括号,得,移项,合并同类项得,系数化为1,得,在数轴上表示解集如图:【点睛】本题考查了解一元一次不等式及在数轴上表示不等式的解集,解题的关键是正确的解一元一次不等式,解集为“”时要用实心点表示.22.(2021·浙江台州市·中考真题)解方程组:【答案】.【分析】观察方程组中同一未知数的系数特点:x的系数存在倍数关系,而y的系数互为相反数,因此将两方程相加,消去y求出x,再求出y的值,可得到方程组的解.【详解】解:①+②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为.【点睛】此题考查解二元一次方程组,解题关键在于利用加减消元法.23.解方程:【答案】x=3.【分析】观察可得方程最简公分母为(x2-1),去分母,转化为整式方程求解,结果要检验.【解析】解:去分母得,解得,x=3,经检验,x=3是原方程的根,所以,原方程的根为:x=3.【点睛】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要检验.24.(2022·四川南充)已知关于x的一元二次方程有实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为,若,求k的值.【答案】(1)k;(2)k=3【分析】根据一元二次方程有实数根得到32-4(k-2)0,解不等式即可;(2)根据根与系数的关系得到,将等式左侧展开代入计算即可得到k值.【解析】(1)解:∵一元二次方程有实数根.∴∆0,即32-4(k-2)0,解得k(2)∵方程的两个实数根分别为,∴,∵,∴,∴,解得k=3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.25.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【答案】240千米【分析】平常速度行驶了的路程用时为2小时,后续减速后用了3小时,用遇到暴雨前行驶路程加上遇到暴雨后行驶路程等于总路程这个等量关系列出方程求解即可.【详解】解:设小强家到他奶奶家的距离是千米,则平时每小时行驶千米,减速后每小时行驶千米,由题可知:遇到暴雨前用时2小时,遇到暴雨后用时5-2=3小时,则可得:,解得:,答:小强家到他奶奶家的距离是240千米.【点睛】本题考查了一元一次方程应用中的行程问题,直接设未知数法,找到准确的等量关系,列出方程正确求解是解题的关键.26.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【答案】摩托车的速度为40千米/时【分析】设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时,根据抢修车比摩托车少用10分钟,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时,依题意,得:,解得:x=40,经检验,x=40是所列方程的根,且符合题意,答:摩托车的速度为40千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.27.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.【答案】【分析】设年买书资金的平均增长率为,根据2022年买书资金2020年买书资金建立方程,解方程即可得.【详解】解:设年买书资金的平均增长率为,由题意得:,解得或(不符合题意,舍去),答:年买书资金的平均增长率为.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.28.(2019·辽宁铁岭·中考真题)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.【答案】(1);(2)10元;(3)x为12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意列方程,解方程即可得到结论;(3)根据题意得到,根据二次函数的性质即可得到结论.【解析】解:(1)根据题意得,,故y与x的函数关系式为;(2)根据题意得,,解得:,(不合题意舍去),答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,,,∴当时,w随x的增大而增大,当时,,答:当x为12时,日销售利润最大,最大利润960元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.29.(2020·湖北恩施·中考真题)某校足球队需购买、两种品牌的足球.已知品牌足球的单价比品牌足球的单价高20元,且用900元购买品牌足球的数量用720元购买品牌足球的数量相等.(1)求、两种品牌足球的单价;(2)若足球队计划购买、两种品牌的足球共90个,且品牌足球的数量不小于品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买品牌足球个,总费用为元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【答案】(1)购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;(2)该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.【分析】(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x-20)元,根据用900元购买品牌足球的数量用720元购买品牌足球的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90−m)个B品牌足球,根据总价=单价×数量结合总价不超过8500元,以及品牌足球的数量不小于品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.【解析】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x-20)元,根据题意,得解得:x=100经检验x=100是原方程的解x-20=80答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元.(2)设购买m个A品牌足球,则购买(90−m)个B品牌足球,则W=100m+80(90-m)=20m+7200∵品牌足球的数量不小于品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.∴解不等式组得:60≤m≤65所以,m的值为:60,61,62,63,64,65即该队共有6种购买方案,当m=60时,W最小m=60时,W=20×60+7200=8400(元)答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.30.(2020•扬州)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2x+y=7,x+2y=8,则x﹣y=,x+y=(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1=.【分析】(1)利用①﹣②可得出x﹣y的值,利用13(①+②)可得出x+y(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m,n,p的三元一次方程组,由2×①﹣②可得除m+n+p的值,再乘5即可求出结论;(3)根据新运算的定义可得出关于a,b,c的三元一次方程组,由3×①﹣2×②可得出a+b+c的值,即1*1的值.【解析】(1)2x+y=7①x+2y=8②由①﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度浙江省二级造价工程师之建设工程造价管理基础知识通关题库(附带答案)
- 2024年度浙江省二级造价工程师之安装工程建设工程计量与计价实务通关题库(附带答案)
- 2024年度浙江省二级造价工程师之土建建设工程计量与计价实务模拟试题(含答案)
- 整形美容培训指南
- 气管插管的固定及护理
- 制作毛绒公仔课件
- 肿瘤科普基础知识
- 科技制作培训
- 肿瘤生物学行为
- 手术前后护理流程
- 城镇燃气场站经营企业安全生产标准化评分标准
- 小家电领域:小熊电器企业组织结构及部门职责
- 成都麓湖社群实操、方法论方案
- 60Si2Mn汽车板簧热处理工艺设计
- 2021年石家庄交通投资发展集团有限责任公司招聘笔试试题及答案解析
- 彭氏五千年简明族谱
- 压延薄膜成型故障的成因及对策
- 医院感染管理组织架构图
- 5-电气绿色专篇
- 外国城建史(复习整理)
- 高考语文必备古诗文(含翻译及赏析)
评论
0/150
提交评论