版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试卷第=page11页,共=sectionpages33页资料整理试卷第=page11页,共=sectionpages33页资料整理中考数学几何专项练习:将军饮马一、一动点1.如图,正方形的边长为8,M在上,且,N是上的一动点,则的最小值为.
【答案】10【分析】要求的最小值,,不能直接求,可考虑通过作辅助线转化,的值,确定最小值为的长度,再由勾股定理计算即可.【详解】解:如图所示,∵正方形是轴对称图形,点B与点D是关于直线为对称轴的对称点,∴连接,,则直线即为的垂直平分线,
∴,∴,连接交于点P,∵点N为上的动点,∴由三角形两边之和大于第三边,知当点N运动到点P时,,的最小值为的长度.∵四边形为正方形,∴,,,,即的最小值为10.故答案为:10【点睛】本考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.2.如图,菱形草地中,沿对角线修建60米和80米两条道路,M、N分别是草地边、的中点,在线段BD上有一个流动饮水点,若要使的距离最短,则最短距离是米.【答案】50【分析】作关于的对称点,连接,交于,连接,当点与重合时,的值最小,根据菱形的性质和勾股定理求出长,即可得出答案.【详解】解:作关于的对称点,连接,交于,连接,当点与重合时,的值最小,四边形是菱形,,,即在上,,,为中点,为中点,为中点,四边形是菱形,,,四边形是平行四边形,,设与的交点为点,四边形是菱形,,米,米,米,的最小值是50米.故答案为:50.【点睛】本题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出的位置.3.如图,在等边中,于,.点分别为上的两个定点且,点为线段上一动点,连接,则的最小值为.【答案】【分析】如图所示,作点关于的对称点,且点在上,则,当在同一条直线上时,有最小值,证明四边形是平行四边形,,由此即可求解.【详解】解:如图所示,作点关于的对称点,∵是等边三角形,,∴,∴点在上,∴,则,当在同一条直线上时,有最小值,∵点关于的对称点,,∴,,∴,∴是等边三角形,即,∴,且,∴四边形是平行四边形,∴,在中,,,∴,∴,故答案为:.【点睛】本题主要考查动点与等边三角形,对称—最短路径,平行四边形的判定和性质的综合,理解并掌握等边三角形得性质,对称—最短路径的计算方法,平行四边形的判定和性质是解题的关键.4.如图,在中,,,,垂直平分,点P为直线上任意一点,则的最小值是.【答案】4【分析】由线段垂直平分线的性质可得,可得当点A,P,C在一条直线上时,有最小值,最小值为的长.【详解】解:连接.∵是的垂直平分线,∴,∴,∴当点A,P,C在一条直线上时,有最小值,最小值为.故答案为:4.【点睛】本题考查了线段垂直平分线的性质,明确线段垂直平分线上的点到线段两端点的距离相等是解题的关键.5.如图,在周长为的菱形中,,,若为对角线上一动点,则的最小值为.【答案】3【分析】作点关于的对称点,连接交于点,则,由两点之间线段最短可知当、、在一条直线上时,有最小值,然后求得的长度即可.【详解】解:作点关于的对称点,则,连接交于点..由两点之间线段最短可知:当、、在一条直线上时,的值最小,此时.四边形为菱形,周长为,,,,,,四边形是平行四边形,.的最小值为.故答案为:.【点睛】本题主要考查的是菱形的性质、轴对称--路径最短问题,明确当、、在一条直线上时有最小值是解题的关键.6.如图,直线与轴,轴分别交于和,点、分别为线段、的中点,为上一动点,当的值最小时,点的坐标为.【答案】【分析】直线与轴,轴分别交于和,可求出点,的坐标,点、分别为线段、的中点,可求出点、的坐标,作点关于轴的对称点,连接与轴的交点就是所求点的坐标.【详解】解:直线与轴,轴分别交于和,∴当,,即;当,,即,∵点、分别为线段、的中点,∴,,如图所示,过点关于轴的对称点,∴,∴直线的解析式为:,当,,即,故答案为:.【点睛】本题主要考查一次函数与最短线段的综合,掌握对称中最短线段的解题方法是解题的关键.7.如图,等边中,,点E为高上的一动点,以为边作等边,连接,,则,的最小值为.【答案】/30度【分析】①与为等边三角形,得到,,,从而证,最后得到答案.②过点D作定直线CF的对称点G,连CG,证出为等边三角形,为的中垂线,得到,,再证为直角三角形,利用勾股定理求出,即可得到答案.【详解】解:①∵为等边三角形,∴,,∴,∵是等边三角形,∵,,∴,,∴,在和中∴,得;故答案为:.②(将军饮马问题)过点D作定直线CF的对称点G,连CG,∴为等边三角形,为的中垂线,,∴,连接,∴,又,∴为直角三角形,∵,,∴,∴的最小值为.故答案为:.【点睛】此题考查了等边三角形的性质,全等三角形的判定及性质,将军饮马,线段垂直平分线的判定及性质,勾股定理等内容,熟练运用将军饮马是解题的关键,具有较强的综合性.8.如果菱形有一条对角线等于它的边长,那么称此菱形为“完美菱形”.如图,已知“完美菱形”的边长为4,是它的较短对角线,点E,F分别是边,上的两个动点,且,点G为的中点,点P为边上的动点,则的最小值为.【答案】【分析】连接,,易知,因为,所以求的最小值只要求出的最小值,然后减去1即可,再利用将军饮马模型构造出的最小值时的线段,利用勾股定理求出即可.【详解】解:设与的交点为O,连接,,∵四边形是菱形,∴,∴,∵,∴的最小值为,作点O关于的对称点,延长交于点H,连接,,,∴,∴,∴的最小值为,∵四边形是菱形,,∴,∵四边形是“完美菱形”的边长为4,∴,,∴,在中,由对称性和菱形的性质,知,在中,,∴的最小值为,故答案为:.【点睛】本题考查了菱形的性质,轴对称性质,勾股定理,掌握等边三角形的判定和性质是解题关键.9.如图,等边中,,O是上一点,且,点M为边上一动点,连接,将线段绕点O按逆时针方向旋转至,连接,则周长的最小值为.
【答案】/【分析】过点N作于点D,过点O作于点H,则,证明,可得,从而得到点N的运动轨迹是直线,且该直线与直线平行,在的左侧,与的距离是,作点C关于该直线的对称点E,连接交该直线于N,即当点B,N,E三点共线时,的周长最小,连接交该直线于G,则,,求出,即可求解.【详解】解:如图,过点N作于点D,过点O作于点H,则,
∵为等边三角形,∴,,∴,根据题意得:,,∴,∴,∴,∴,∵,∴,∵,∴,∴,∴,∴点N的运动轨迹是直线,且该直线与直线平行,在的左侧,与的距离是,作点C关于该直线的对称点E,连接交该直线于N,即当点B,N,E三点共线时,的周长最小,连接交该直线于G,则,,∴,∴△ACN的周长的最小值为,故答案为:.【点睛】本题考查旋转变换,全等三角形的判定和性质,轴对称,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.二、两动点10.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.【答案】【详解】解:作M关于OB的对称点M',N关于OA的对称点N',连接两对称点M'N',交OB、OA于P、Q.此时MP+PQ+QN有最小值,根据线段垂直平分线性质和两点之间线段最短,MP+PQ+QN=M'P+PQ+QN'=M'N',M'N'的长度就是所求的MP+PQ+QN的最小值.分别连接OM',ON',∠N'OA=∠AOB=30°,∠M'OB=∠AOB=30°,所以∠M'ON'=90º,所以三角形M'ON'是直角三角形,OM'=OM=1,ON'=ON=3,由勾股定理得M'N'为.所以MP+PQ+QN的最小值是.故答案是:.11.如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为.【答案】3【分析】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等边三角形,据此即可求解.【详解】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵点P关于OA的对称点为C,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=3.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3.【点睛】此题主要考查轴对称--最短路线问题,综合运用了等边三角形的知识.正确作出图形,理解△PMN周长最小的条件是解题的关键.12.如图,∠AOB=45°,角内有一点P,PO=10,在角两边上有两点Q、R(均不同于点O),则△PQR的周长最小值是;当△PQR周长最小时,∠QPR的度数=.【答案】1090°【详解】思路引领:根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接AB,根据两点之间线段最短得到最小值线段,再构造直角三角形,利用勾股定理求出MN的值即可.根据对称的性质求得∠OMN+∠ONM=∠OPQ+∠OPR,即可求得∠QPR的度数.答案详解:分别作P关于OA、OB的对称点M、N.连接MN交OA、OB交于Q、R,则△PQR符合条件.连接OM、ON,则OM=ON=OP=10,∠MON=∠MOP+∠NOP=2∠AOB=2×45°=90°,故△MON为等腰直角三角形.∴MN10.根据对称的性质得到∠OMN=∠OPQ,∠ONM=∠OPR,∴∠OMN+∠ONM=∠OPQ+∠OPR,∵△MON为等腰直角三角形,∴∠OMN+∠ONM=90°,∴∠OPQ+∠OPR=90°,即∠QPR=90°.故答案为10,90°.13.如图,点P是内任意一点,,点M和点N分别是射线和射线上的动点,,则周长的最小值是.【答案】【分析】分别作点P关于的对称点C、D,连接,分别交于点M、N,连接,当点M、N在上时,的周长最小.【详解】解:分别作点P关于的对称点C、D,连接,分别交于点M、N,连接.∵点P关于的对称点为C,关于的对称点为D,∴;∵点P关于的对称点为D,∴,∴,,∴是等边三角形,∴.∴的周长的最小值.故答案为:.【点睛】本题主要考查最短路径问题和等边三角形的判定.作点P关于OA、OB的对称点C、D是解题的关键所在.14.如图,正方形中,点是边上一定点,点、、分别是边、、上的动点,若,则四边形的周长最小时.
【答案】【分析】如图,作点G关于的对称点,作点关于的对称点,作点关于的对称点,连接交于点,交于点,连接,交于点,连接、,四边形的周长最小,求出此时即可.【详解】解:如图,作点G关于的对称点,作点关于的对称点,作点关于的对称点,连接交于点,交于点,连接,交于点,连接、,四边形的周长最小,
由对称的性质知,,∴,当、、三点共线时值最小;同理可得:,当、、、四点点共线时值最小;∵,正方形是正方形;∴,,由对称的性质知,,,,,,∴,∵,∴是等腰直角三角形,∴.∴故答案为:.【点睛】本题考查了轴对称的性质,正方形性质,等腰直角三角形的判定和性质,勾股定理等知识,利用作轴对称图形解决最值问题是解题关键.15.如图,在边长为8的正方形中,点G是边的中点,E、F分别是和边上的点,则四边形周长的最小值为.【答案】24【分析】作点G关于的对称点,作点B关于的对称点,连接、、,根据对称的性质可得,,再由,,可得当时,四边形的周长有最小值,最小值为,再利用勾股定理求得,最后利用即可求解.【详解】解:如图,作点G关于的对称点,作点B关于的对称点,连接、、,∵,,∴,∵,
∴当时,四边形的周长有最小值,最小值为,∵,,∴,,∴,∴,∴四边形的周长的最小值为24,故答案为:24.【点睛】本题考查了正方形的性质、轴对称的性质、勾股定理,三角形的三边关系,熟练掌握轴对称的性质,构造三角形是解题的关键.三、平移变换16.如图,在等腰直角中,,点D,E分别为,上的动点,且,,当的值最小时,的长为.
【答案】/【分析】过点C作,设,利用勾股定理求得,再根据等腰直角三角形的性质可得,从而可得,即欲求的最小值,相当于在x轴上寻找一点,到点,的距离和的最小值,利用待定系数法求直线的解析式,从而求得,即可求解.【详解】解:过点C作,设,如图所示,
∵,,∴,又∵,∴,∴,欲求的最小值,相当于在x轴上寻找一点,到点,的距离和的最小值,如图,作点F关于x轴的对称点,当E、P、共线时,的值最小,此时,设直线的解析式为:,得,,解得:,∴直线的解析式为,当时,,即,∴的值最小,的值为:,
故答案为:.【点睛】本题考查等腰三角形的与性质、两点间的距离公式、用待定系数法求一次函数解析式、线段和的最值及勾股定理,熟练掌握相关知识是解题的关键.17.如图,四边形是平行四边形,,,,点、是边上的动点,且,则四边形周长的最小值为.
【答案】【分析】根据题意,将点沿向右平移2个单位长度得到点,作点关于的对称点,连接,交于点,在上截取,连接,,此时四边形的周长为,则当点、、三点共线时,四边形的周长最小,进而计算即可得解.【详解】如下图,将点沿向右平移2个单位长度得到点,作点关于的对称点,连接,交于点,在上截取,连接,,∴,,此时四边形的周长为,当点、、三点共线时,四边形的周长最小,,,,经过点,,,,,,,四边形周长的最小值为,故答案为:.
【点睛】本题主要考查了四边形周长的最小值问题,涉及到含的直角三角形的性质,勾股定理等,熟练掌握相关轴对称作图方法以及线段长的求解方法是解决本题的关键.18.如图,O为矩形ABCD对角线AC,BD的交点,AB=8,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是.【答案】【分析】根据题意,过O作OH∥BC,且令OH=2,连接NH,作O点关于BC的对称点K,连接OK,KH,则OM+ON=NH+ON=NH+NK≥HK,当H、N、K三点共线的时候,OM+ON有最小值,最小值为HK的长.根据矩形性质及图形的对称性,易知,在中,运用勾股定理求得HK的长即可.【详解】解:过O作OH∥BC,且令OH=2,连接NH,作O点关于BC的对称点K,连接OK,KH,∵OH∥BC,OH=MN=2,∴四边形OMNH是平行四边形,∴OM=NH,∴OM+ON=NH+ON.∵O点关于BC的对称点是点K,∴ON=NK,∴OM+ON=NH+ON=NH+NK,∵,∴当H、N、K三点共线的时候,OM+ON有最小值,最小值为HK的长.∵OH∥BC,O点关于BC的对称点是点K,∴.
∵O为矩形ABCD对角线AC,BD的交点,O点关于BC的对称点是点K,∴OK=AB=8.∵OH=2,,∴,∴OM+ON的最小值是.【点睛】本题考查了最短路径问题,矩形性质,勾股定理求直角三角形的边长,其中熟练画出OM+ON取最小值时所对应的线段,是解题的关键.19.如图,在边长为2的正方形ABCD中,点E,F分别是边BC,AD上的点,连接EF,将四边形ABEF沿EF折叠,点B的对应点G恰好落在CD边上,点A的对应点为H,连接BH.则的最小值是.【答案】【分析】过点A作AI∥EF交BC于点I,连接BG,构造Rt△ABI≌Rt△BCG,再延长BC至K,使CK=BC,连接GK,AG,AK,构造△ABG≌△HGB,由全等三角形的性质,将转化为AG+GK,求出AG+GK的最小值.【详解】解:如图,过点A作AI∥EF交BC于点I,连接BG,由折叠可知BE=EG,∠BEF=∠GEF,∴EF⊥BG,∵AI∥EF,∴∠BAI+∠ABG=90°,∵∠CBG+∠ABG=90°,∴∠ABI=∠CBG,由正方形ABCD可得AB=BC,∠BAI=∠BCG=90°,∴Rt△ABI≌Rt△BCG,∴AI=BG,又∵AI∥EF,AF∥EI,∴四边形AIEF是平行四边形,∴EF=AI=BG,延长BC至K,使CK=BC,连接GK,AG,AK,∵∠DCB=90°,∴DC⊥BK,∴DC垂直平分BK,∴BG=KG,由翻折可知,AB=HG,∠ABG=∠HGB,∴△ABG≌△HGB,∴AG=BH,∴BH+EF=AG+KGAK,∴当A,G,K共线时,BH+EF最小,最小值等于AK,∵AB=2,BK=2BC=4,∠ABK=90°,∴,故答案为:.【点睛】本题重点考查正方形的性质、全等三角形的判定与性质、轴对称的性质、勾股定理等,解题关键是作辅助线构造全等三角形和直角三角形.20.将两个全等的等腰直角三角形纸片的斜边重合,按如图位置放置,其中∠A=∠BCD=90°,AB=AD=CB=CD=2,将△ABD沿射线BD平移,得到△EGF,连接EC,GC.则EC+GC的最小值为.【答案】【分析】连接DE,直线AE,作点C关于直线AE的对称点H,连接DH,先证明四边形EGCD是平行四边形,推出DE=CG,推出EC+GC=EC+ED=HE+ED≥DH,再证明四边形ABCD为正方形,从而H、A、C三点共线,再用勾股定理求出HD即可.【详解】解:如图,连接DE,直线AE,作点C关于直线AE的对称点H,连接DH,∵将△ABD沿射线BD平移,得到△EGF,∴GE=CD且GE∥CD,∴四边形GEDC为平行四边形,∴ED=CG,∴EC+GC=EC+ED=HE+ED≥DH,∵CH⊥AE,AE∥BD,∴CH⊥BD,∵∠BAD=∠BCD=90°,AB=AD=CB=CD=2,∴四边形ABCD为正方形,∴AC⊥BD,∴H、A、C三点共线,记HC与BD相交于M,∴MD=BD,HM=3AM=3MD,∵BD=,∴HD=,∴EC+GC的最小值为,故答案为:.【点睛】本题主要考查轴对称-最短路径问题,平行四边形的判定和性质,正方形的判定与性质,勾股定理.解题的关键是连接DE,证明四边形EGCD是平行四边形,将EC+GC转化成HE+ED.21.如图,在矩形ABCD中,,,点P在边AD上,点Q在边BC上,且,连接CP,QD,则的最小值为.【答案】13【分析】连接BP,在BA的延长线上截取AE=AB=6,连接PE,CE,PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=6,则PC+QD=PC+PB=PC+PE≥CE,根据勾股定理可得结果.【详解】解:如图,连接BP,在矩形ABCD中,ADBC,AD=BC,∵AP=CQ,∴AD-AP=BC-CQ,∴DP=QB,DPBQ,∴四边形DPBQ是平行四边形,∴PBDQ,PB=DQ,则PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=6,连接PE,∵PA⊥BE,∴PA是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,连接CE,则PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,BC=AD=5,∴CE==13.∴PC+PB的最小值为13.故答案为:13.【点睛】本题考查的是最短线路问题,矩形的性质,全等三角形的判定与性质,熟知两点之间线段最短的知识是解答此题的关键.22.如图,平面直角坐标系中,点是直线上一动点,将点向右平移1个单位得到点,点,则的最小值为.【答案】【分析】设D(-1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,ED,作ES⊥x轴于S,根据题意OE就是OB+CB的最小值,由直线的解析式求得F的坐标,进而求得ED的长,从而求得OS和ES,然后根据勾股定理即可求得OE.【详解】解:设D(-1,0),作D点关于直线的对称点E,连接OE,交直线于A,连接AD,ED,作ES⊥x轴于S,∵AB∥DC,且AB=OD=OC=1,∴四边形ABOD和四边形ABCO是平行四边形,∴AD=OB,OA=BC,∴AD+OA=OB+BC,∵AE=AD,∴AE+OA=OB+BC,即OE=OB+BC,∴OB+CB的最小值为OE,由可知∠AFO=30°,F(-4,0),∴FD=3,∠FDG=60°,∴DG=DF=,∴DE=2DG=3,∴ES=DE=,DS=DE=,∴OS=,∴OE=,∴OB+CB的最小值为.【点睛】本题考查了一次函数的性质,轴对称-最短路线问题以及平行四边形的性质、勾股定理的应用,证得OE是OB+CB的最小值是本题的关键.23.如图,点D,E是ABC内的两点,且DEAB,连结AD,BE,CE.若AB=9,DE=2,BC=10,∠ABC=75°,则AD+BE+CE的最小值为.【答案】【分析】过点作交于,将绕点逆时针旋转,得到△,过作交延长线于,则,都是等边三角形,可判断四边形是平行四边形,由已知分别可求,,则,,所以,则,当、、、共线时,有最小值为的长,再由,,可得,,在中,,在△中,,则的最小值为.【详解】解:过点作交于,将绕点逆时针旋转,得到△,过作交延长线于,,都是等边三角形,,四边形是平行四边形,,,,,,,,,当、、、共线时,有最小值为的长,,,,,在中,,在△中,,的最小值为,故答案为.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称的性质,通过构造平行四边形、旋转三角形,确定AD+BE+CE有最小值为CF'的长是解题的关键.24.如图,在等腰中,,,于点,点M,N分别是DE,DG上的动点,且,则的最小值为.
【答案】【分析】过点作,使得,证得,利用全等三角形的性质证得,求的最小值即求的最小值,此时只有、、在一条直线上时,的最小,即为的长,在中利用勾股定理即可求解.【详解】解:过点作,使得,如图所示,
∵等腰中,,,∴,,∴,∵等腰中,,,,∴,∴,在和中,∴,∴,∴求的最小值即求的最小值,此时只有、、在一条直线上时,的最小,即为的长,∴在中,,即的最小值为,故答案为:【点睛】本题考查了作辅助线构造全等三角形,利用全等三角形的性质证得线段相等,再利用两点之间线段最短和勾股定理求解,解题的关键作出辅助线构造全等三角形.25.如图,在长方形ABCD中,,,点P为边AB上的一个动点,过点P作,分别交BD、CD于点E、Q,则的最小值为.【答案】4【分析】在长方形中,求出,,设,用勾股定理可得,可得,用勾股定理可得最小值.【详解】解:在长方形中,,,,,设,则,,在中,,,,在中,,,在中,,,如图:设,,,,,,则,,由图可知,当、、共线时,最小,最小值为的长,过作交延长线于,则四边形是矩形,在中,,,,最小值是4,最小值是4,故答案为:4.【点睛】本题考查矩形中的最短路径问题,解题的关键是设,用含的代数式表示,再构造数学模型用勾股定理即可求得答案.26.如图,在矩形ABCD中,AB=5,BC=8,点M为边BC的中点,P是直线AD上的一个动点,以MP为边在MP右侧作RtMPQ,且PM=PQ,连结AM,AQ,则AMQ周长的最小值为.【答案】+【分析】因为△AMQ的周长为AM+AQ+MQ,其中AM的长可以由直角△ABM中利用勾股定理求得,为定值,所以只需要求得AQ+MQ的最小值即可,由题意可得,点A,M为定点,Q为动点,即“一动两定”问题,只需要找到动点Q的运动轨迹即可,过A作AM⊥AN,使AN=AM,先证△MAN∽△MPQ,再证△MAP∽△MNQ,得到∠MAP=∠MNQ,延长NQ交直线AD于H,可以得到∠NHO=45°,则Q点在经过N点,且与直线AD夹角为45°的直线NH上运动,此题就变成了“在直线NH上找一点Q,使AQ+QM最小“的将军饮马问题,所以过A作关于NH的对称点K,连接KM交NH于Q,AQ+MQ的最小值为MK,利用勾股定理可求出KM的值,即可解决.【详解】解:如图1,过A做AN⊥AM,使AN=AM,连接MN,NQ,则∠AMN=∠ANM=45°,∵△MPQ是直角三角形,且PM=PQ,∴∠PMQ=∠AMN=45°,∠MAN=∠MPQ=90°,∴△AMN∽△PMQ,∴,∵∠AMN=∠PMQ,∴∠AMP=∠NMQ,∴△MAP∽△MNQ,∴∠MAP=∠MNQ,延长MQ交AD于H,设AD与MN交于点O,则∠AOM+∠AMN=∠NOH+∠NHO,∵∠AOM=∠HOH,∴∠NHO=∠AMN=45°,∴直线NH与直线AD夹角为45°,∴Q在经过N点且与直线AD夹角为45°的直线NH上运动,如图2,过M作ME⊥AD于E,过N作NF⊥AD于F,则∠AEM=∠NFA=90°,∴∠NAF+∠MAE=∠MAE+∠AME=90°,∴∠NAF=∠AME,在△AME与△NAF中,,∴△AME≌△NAF(AAS),∴AE=NF,EM=AF,∵M是BC的中点,BC=8,∴BM=4,∵四边形ABCD是矩形,∴∠ABM=∠BAD=∠AEM=90°,∴四边形ABME是矩形,∴NF=AE=BM=4,EM=AB=AF=5,在直角△NHF中,∠NHF=45°,∴∠FNH=∠NHF=45°,∴FH=NF=4,∴AH=AF+FH=5+4=9,在直角△ABM中,AM==,如图3,过A作关于直线NH的对称点K,连接KM交直线NH于点Q,此时NH垂直平分AK,则AQ=QK,∴AQ+QM+AM=QK+QM+=MK+为△ABC的周长的最小值,连接KH并延长交BC于T,则∠KHN=∠AHN=45°,KH=AH=9,∴∠AHK=90°,∵AD∥BC,∴∠MFK=∠AHK=90°,∵∠MTK=∠THA=∠MEH=90°,∴四边形EMTH为矩形,∴MT=EH=AH−AE=8−4=5,HT=EM=AB=5,在直角△MTK中,KT=KH+HT=14,MT=5,∴MK==,∴△AMQ的周长最小值为+,故答案为:+.【点睛】本题考查了最短路径问题,如何将AQ+QM的最小值问题转化为将军饮马问题是解决本题的关键,找到动点Q的运动轨迹是解决本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年2汽车销售代理权合同
- 2024年太阳能发电项目EPC建设合同
- 2024年工业制品买卖合同
- 2024年公路施工临时用工合同
- 2(2024版)网络游戏开发与运营合同
- 2024城市园林绿化工程承包合同
- 2024年工程监理与验收合同详细条款和合同标的
- 2024年工程调整合同:增量部分细节说明
- 2024年全面修订:软件许可及技术支持合同
- 2024-2030年中国安全带行业需求趋势及发展潜力研究报告
- 激励理论-赫茨伯格的“双因素理论”案例分析课件
- JC-T 738-2004水泥强度快速检验方法
- 第六章-冷冻真空干燥技术-wang
- 科研的思路与方法
- 山东联通公司招聘笔试题
- 2024年新智认知数字科技股份有限公司招聘笔试参考题库含答案解析
- 金属探测器检测记录
- 安全教育记录范文(25篇)
- 2024年供应链管理竞赛考试题库
- 三年级语文下册第二单元群文阅读教学设计
- 习思想教材配套练习题 第七章 社会主义现代化建设的教育、科技、人才战略
评论
0/150
提交评论