版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19.3正方形华东师大·八年级数学下册复习导入回顾复习矩形:有一个角是直角的平行四边形是矩形.矩形的性质:矩形的四个角都是直角.矩形的对角线相等.菱形:有一组邻边相等的平行四边形叫做菱形.菱形的性质:菱形的四条边都相等.菱形的对角线互相垂直.进行新课思考:在我们的生活中,除了平行四边形、矩形、菱形外,还有什么特殊的平行四边形呢?正方形正方形有什么性质?怎样判定一个四边形是正方形?
正方形是我们熟悉的几何图形,它的四条边都相等,四个角都是直角.因此,正方形既是矩形,又是菱形.
正方形也是矩形,所以它具有矩形的性质,四个角相等,对角线相等.
正方形也是菱形,所以正方形也具有菱形的性质,即正方形的四条边相等,对角线互相垂直,并且每条对角线平分一组对角.
正方形也是菱形,所以正方形也具有菱形的性质,即正方形的四条边相等,对角线互相垂直,并且每条对角线平分一组对角.正方形是轴对称图形吗?有几条对称轴?是轴对称图形,有4条对称轴.正方形的性质正方形的四个角都是直角;正方形的四条边都相等;正方形的对角线相等,并且互相垂直平分;正方形是轴对称图形,它有四条对称轴.思考:那么,如何判定一个四边形是正方形呢?判定一个四边形为正方形的主要依据是定义,途径有两条:(1)先证它是矩形,再证它有一组邻边相等;(2)先证它是菱形,再证它有一个角为直角.例1如图,已知正方形ABCD.求∠ABD、∠DAC、∠DOC的大小.ABCDO分析:由正方形的特殊性质,可知∠DOC=90°.易证△ABO≌△CBO,从而可得∠ABD=×90°=45°,同理可得∠DAC=45°.讨论老师给学生一个任务:从一张彩色纸中剪出一个正方形.小明剪完后,这样检验它:比较边的长度,发现四条边是相等的,于是就判定自己完成了这个任务.这种检验可信吗?小兵用另一种方法检验:他量的不是边,而是对角线,发现对角线是相等的,于是就认为自己正确地剪出了正方形.这种检验对吗?小英剪完后,比较了由对角线相互分成的4条线段,发现它们是相等的.按照小英的意见,这说明剪出的四边形是正方形.你的意见呢?思考:正方形、菱形、矩形、平行四边形之间有什么关系?与同学们讨论一下.平行四边形菱形正方形平行四边形矩形正方形邻边相等有一个直角一组邻边相等有一个直角边角对角线平行四边形对边平行且相等对角相等对角线互相平分矩形对边平行且相等四个角都是直角对角线互相平分、相等菱形对边平行,四条边相等对角相等对角线互相垂直、平分正方形对边平行,四条边相等四个角都是直角对角线互相垂直、平分且相等归纳小结随堂练习1.正方形具有而菱形不一定具有的性质是()A.对角线互相平分 B.对角线互相垂直C.对角线相等 D.每一条对角线平分一组对角C2.满足下列条件的四边形是不是正方形?为什么?(1)对角线互相垂直且相等的平行四边形.()(2)对角线互相垂直的矩形.()(3)对角线相等的菱形.()(4)对角线互相垂直平分且相等的四边形.()是是是是3.如图,四边形ABCD是正方形,点G是BC上的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F,求证:AF-BF=EF.证明:∵∠BAF+∠DAE=90°,又∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠BAF+∠ABF=90°,∴∠ABF=∠DAE.又∵AB=DA,∠AFB=∠DEA=90°,∴△ABF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合租房合同协议书
- 2024版股权投资合同标的投资金额及收益分配方案6篇
- 电子设计基础与创新实践教程-课件 【ch09】基于树莓派的图形化在线编程
- 个人汽车买卖合同协议书
- 合资修路协议
- 二零二四年度工程建设项目评估与审计居间合同3篇
- 解除工程合同协议书范本范本完整版
- 小学洗茶具课件
- 矿山合同模板
- 铝合金工艺品设计与制作合同(2024版)
- ASTM-D3359-(附著力测试标准)-中文版
- 国开2024年秋《机械制图》形考作业1-4答案
- QBT 2460-1999 聚碳酸酯(PC)饮用水罐
- JT-T 1495-2024 公路水运危险性较大工程专项施工方案编制审查规程
- 庭审结束后提交补充意见范本
- 新生儿黄疸护理查房PPT课件
- 第8章绿色设计PPT课件
- 精品【毕业设计】年产1万吨维生素C发酵车间设计-定
- 《Altium-designer》期末考试试卷(上机)(共4页)
- 鼠标模具的设计 毕业设计
- 工程材料品牌变更申请单
评论
0/150
提交评论