版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
生物化学第一章
蛋白质化学
测试题一、单项选择题1.测得某一蛋白质样品的氮含量为0.40g,此样品约含蛋白质多少?B(每克样品*6.25)A.2.00gB.2.50gC.6.40gD.3.00gE.6.25g2.下列含有两个羧基的氨基酸是:EA.精氨酸B.赖氨酸C.甘氨酸D.色氨酸E.谷氨酸3.维持蛋白质二级结构的主要化学键是:DA.盐键B.疏水键C.肽键D.氢键E.二硫键(三级结构)4.关于蛋白质分子三级结构的描述,其中错误的是:BA.天然蛋白质分子均有的这种结构B.具有三级结构的多肽链都具有生物学活性C.三级结构的稳定性主要是次级键维系D.亲水基团聚集在三级结构的表面E.决定盘曲折叠的因素是氨基酸残基5.具有四级结构的蛋白质特征是:EA.分子中必定含有辅基B.在两条或两条以上具有三级结构多肽链的基础上,肽链进一步折叠,盘曲形成C.每条多肽链都具有独立的生物学活性D.依赖肽键维系四级结构的稳定性E.由两条或两条以上具在三级结构的多肽链组成6.蛋白质所形成的胶体颗粒,在下列哪种条件下不稳定:CA.溶液pH值大于pIB.溶液pH值小于pIC.溶液pH值等于pID.溶液pH值等于7.4E.在水溶液中7.蛋白质变性是由于:DA.氨基酸排列顺序的改变B.氨基酸组成的改变C.肽键的断裂D.蛋白质空间构象的破坏E.蛋白质的水解8.变性蛋白质的主要特点是:DA.粘度下降B.溶解度增加C.不易被蛋白酶水解D.生物学活性丧失E.容易被盐析出现沉淀9.若用重金属沉淀pI为8的蛋白质时,该溶液的pH值应为:BA.8B.>8C.<8D.≤8E.≥810.蛋白质分子组成中不含有下列哪种氨基酸?EA.半胱氨酸B.蛋氨酸C.胱氨酸D.丝氨酸E.瓜氨酸二、多项选择题1.含硫氨基酸包括:ADA.蛋氨酸B.苏氨酸C.组氨酸D.半胖氨酸2.下列哪些是碱性氨基酸:ACDA.组氨酸B.蛋氨酸C.精氨酸D.赖氨酸3.芳香族氨基酸是:ABDA.苯丙氨酸B.酪氨酸C.色氨酸D.脯氨酸4.关于α-螺旋正确的是:ABDA.螺旋中每3.6个氨基酸残基为一周B.为右手螺旋结构C.两螺旋之间借二硫键维持其稳定(氢键)D.氨基酸侧链R基团分布在螺旋外侧5.蛋白质的二级结构包括:ABCDA.α-螺旋B.β-片层C.β-转角D.无规卷曲6.下列关于β-片层结构的论述哪些是正确的:ABCA.是一种伸展的肽链结构B.肽键平面折叠成锯齿状C.也可由两条以上多肽链顺向或逆向平行排列而成D.两链间形成离子键以使结构稳定(氢键)7.维持蛋白质三级结构的主要键是:BCDA.肽键B.疏水键C.离子键D.范德华引力8.下列哪种蛋白质在pH5的溶液中带正电荷?BCD(>5)A.pI为4.5的蛋白质B.pI为7.4的蛋白质C.pI为7的蛋白质D.pI为6.5的蛋白质9.使蛋白质沉淀但不变性的方法有:ACA.中性盐沉淀蛋白B.鞣酸沉淀蛋白C.低温乙醇沉淀蛋白D.重金属盐沉淀蛋白10.变性蛋白质的特性有:ABCA.溶解度显著下降B.生物学活性丧失C.易被蛋白酶水解D.凝固或沉淀三、填空题1.组成蛋白质的主要元素有___碳______,_氢_______,____氧_____,__氮_______。2.不同蛋白质的含_氮_量颇为相近,平均含量为16%。3.蛋白质具有两性电离性质,大多数在酸性溶液中带正电荷,在碱性溶液中带负电荷。当蛋白质处在某一pH值溶液中时,它所带的正负电荷数相待,此时的蛋白质成为两性离子,该溶液的pH值称为蛋白质的等电点。4.蛋白质的一级结构是指氨基酸在蛋白质多肽链中的排列顺序5.在蛋白质分子中,一个氨基酸的α碳原子上的__氨基_与另一个氨基酸α碳原子上的_羧基__脱去一分子水形成的键叫__肽键__,它是蛋白质分子中的基本结构键。6.蛋白质颗粒表面的_电荷层_和_水化膜__是蛋白质亲水胶体稳定的两个因素。7.蛋白质变性主要是因为破坏了维持和稳定其空间构象的各种___次级键__键,使天然蛋白质原有的_物理化学_与_生物学__性质改变。8.按照分子形状分类,蛋白质分子形状的长短轴之比小于10的称为___球状蛋白质____,蛋白质分子形状的长短轴之比大于10的称为___纤维状蛋白质______。按照组成分分类,分子组成中仅含氨基酸的称____单纯蛋白质___,分子组成中除了蛋白质部分还分非蛋白质部分的称___结合蛋白质______,其中非蛋白质部分称_辅基___。生物化学第二章
核酸化学
测试题1.自然界游离核苷酸中,磷酸最常见是位于:AA.戊糖的C-5′上B.戊糖的C-2′上C.戊糖的C-3′上D.戊糖的C-2′和C-5′上E.戊糖的C-2′和C-3′上
2.可用于测量生物样品中核酸含量的元素是:DA.碳B.氢C.氧D.磷E.氮
3.下列哪种碱基只存在于RNA而不存在于DNA:AA.尿嘧啶B.腺嘌呤C.胞嘧啶D.鸟嘌呤E.胸腺嘧啶
4.核酸中核苷酸之间的连接方式是:EA.2′,3′磷酸二酯键B.糖苷键C.2′,5′磷酸二酯键D.肽键E.3′,5′磷酸二酯键
5.核酸对紫外线的最大吸收峰在哪一波长附近?BA.280nmB.260nmC.200nmD.340nmE.220nm
6.有关RNA的描写哪项是错误的:CA.mRNA分子中含有遗传密码B.tRNA是分子量最小的一种RNAC.胞浆中只有mRNAD.RNA可分为mRNA、tRNA、rRNAE.组成核糖体的主要是rRNA
7.大部分真核细胞mRNA的3′-末端都具有:AA.多聚AB.多聚UC.多聚TD.多聚CE.多聚G
8.DNA变性是指:DA.分子中磷酸二酯键断裂B.多核苷酸链解聚C.DNA分子由超螺旋→双链双螺旋D.互补碱基之间氢键断裂E.DNA分子中碱基丢失
9.DNATm值较高是由于下列哪组核苷酸含量较高所致?BA.G+AB.C+GC.A+TD.C+TE.A+C
10.某DNA分子中腺嘌呤的含量为15%,则胞嘧啶的含量应为:DA.15%B.30%C.40%D.35%E.7%
二、多项选择题(在备选答案中有二个或二个以上是正确的,错选或未选全的均不给分)1.DNA分子中的碱基组成是:ABCA.A+C=G+TB.C=GC.A=TD.C+G=A+T
2.含有腺苷酸的辅酶有:ABCA.NAD+B.NADP+C.FADD.FMN
3.DNA水解后可得到下列哪些最终产物:ACA.磷酸B.核糖C.腺嘌呤、鸟嘌呤D.胞嘧啶、尿嘧啶
4.关于DNA的碱基组成,正确的说法是:BDA.腺嘌呤与鸟嘌呤分子数相等,胞嘧啶与胸嘧啶分子数相等B.不同种属DNA碱基组成比例不同C.同一生物的不同器官DNA碱基组成不同D.年龄增长但DNA碱基组成不变
5.DNA二级结构特点有:ABCDA.两条多核苷酸链反向平行围绕同一中心轴构成双螺旋B.以A-T,G-C方式形成碱基配对C.双链均为右手螺旋D.链状骨架由脱氧核糖和磷酸组成
6.tRNA分子二级结构的特征是:DEA.3′端有多聚AB.5′端有C-C-A(3′)C.有密码环(反)D.有氨基酸臂
7.DNA变性时发生的变化是:ABA.链间氢链断裂,双螺旋结构破坏B.高色效应C.粘度增加D.共价键断裂
8.mRNA的特点有:ABCA.分子大小不均一B.有3′-多聚腺苷酸尾C.有编码区D.有5′C-C-A结构
9.影响Tm值的因素有:ABCA.一定条件下核酸分子越长,Tm值越大B.DNA中G,C对含量高,则Tm值高C.溶液离子强度高,则Tm值高D.DNA中A,T含量高,则Tm值高
10.真核生物DNA的高级结构包括有:ACA.核小体B.环状DNAC.染色质纤维D.α-螺旋
三、填空题1.核酸完全的水解产物是_磷酸含氮碱___和_戊糖__。其中__含氮碱__又可分为___嘌呤___碱和__嘧啶___碱。2.体内的嘌呤主要有__腺嘌呤鸟嘌呤_;嘧啶碱主要有__胞嘧啶尿嘧啶_胸腺嘧啶_某些RNA分子中还含有微量的其它碱基,称为___稀有碱基______。3.嘌呤环上的第___9__位氮原子与戊糖的第_1__位碳原子相连形成___糖苷键___键,通过这种键相连而成的化合物叫___嘌呤核苷_。4.体内两种主要的环核苷酸是__cAMPcGMP__5.写出下列核苷酸符号的中文名称:ATP__三磷酸腺苷___bCDP_脱氧二磷酸胞苷6.RNA的二级结构大多数是以单股__多核苷酸链__的形式存在,但也可局部盘曲形成_双螺旋__结构,典型的tRNA结构是__三叶草__结构。7.tRNA的三叶草型结构中有___二氢尿嘧啶_环,____反密码__环,_TφC__环及_额外_环,还有__氨基酸臂。8.tRNA的三叶草型结构中,其中氨基酸臂的功能是____与氨基酸结合__,反密码环的功能是___辨认密码子__。生物化学第三章
酶
测试题
一、单项选择题1.关于酶的叙述哪项是正确的?CA.所有的酶都含有辅基或辅酶B.只能在体内起催化作用C.大多数酶的化学本质是蛋白质D.能改变化学反应的平衡点加速反应的进行E.都具有立体异构专一性(特异性)
2.酶原所以没有活性是因为:BA.酶蛋白肽链合成不完全B.活性中心未形成或未暴露C.酶原是普通的蛋白质D.缺乏辅酶或辅基E.是已经变性的蛋白质
3.磺胺类药物的类似物是:CA.四氢叶酸B.二氢叶酸C.对氨基苯甲酸D.叶酸E.嘧啶
4.关于酶活性中心的叙述,哪项不正确?CA.酶与底物接触只限于酶分子上与酶活性密切有关的较小区域B.必需基团可位于活性中心之内,也可位于活性中心之外C.一般来说,总是多肽链的一级结构上相邻的几个氨基酸的残基相对集中,形成酶的活性中心D.酶原激活实际上就是完整的活性中心形成的过程E.当底物分子与酶分子相接触时,可引起酶活性中心的构象改变
5.辅酶NADP+分子中含有哪种B族维生素?DA.磷酸吡哆醛B.核黄素C.叶酸D.尼克酰胺E.硫胺素
6.下列关于酶蛋白和辅助因子的叙述,哪一点不正确?CA.酶蛋白或辅助因子单独存在时均无催化作用B.一种酶蛋白只与一种辅助因子结合成一种全酶C.一种辅助因子只能与一种酶蛋白结合成一种全酶D.酶蛋白决定结合酶蛋白反应的专一性E.辅助因子直接参加反应
7.如果有一酶促反应其〔8〕=1/2Km,则v值应等于多少Vmax?BA.0.25B.0.33C.0.50D.0.67E.0.75
8.有机磷杀虫剂对胆碱酯酶的抑制作用属于:EA.可逆性抑制作用B.竞争性抑制作用C.非竞争性抑制作用D.反竞争性抑制作用E.不可逆性抑制作用
9.关于pH对酶活性的影响,以下哪项不对?DA.影响必需基团解离状态B.也能影响底物的解离状态C.酶在一定的pH范围内发挥最高活性D.破坏酶蛋白的一级结构E.pH改变能影响酶的Km值
10.丙二酸对于琥珀酸脱氢酶的影响属于:CA.反馈抑制B.底物抑制C.竞争性抑制D.非竞争性抑制E.变构调节
11.Km值的概念是:DA.与酶对底物的亲和力无关B.是达到Vm所必须的底物浓度C.同一种酶的各种同工酶的Km值相同D.是达到1/2Vm的底物浓度E.与底物的性质无关
二、多项选择题1.关于酶的竞争性抑制作用的说法哪些是正确的?ABCDA.抑制剂结构一般与底物结构相似B.Vm不变C.增加底物浓度可减弱抑制剂的影响D.使Km值增大
2.关于酶的非竞争性抑制作用的说法哪些是正确的?BCDA.增加底物浓度能减少抑制剂的影响B.Vm降低C.抑制剂结构与底物无相似之处D.Km值不变
3.酶与一般催化剂的不同点,在于酶具有:BCDA.酶可改变反应平衡常数B.极高催化效率C.对反应环境的高度不稳定D.高度专一性
4.FAD分子组成是:ABDA.含有维生素B2B.是一种二核苷酸C.含有GMP组分D.含有ADP组分
5.关于同工酶,哪些说明是正确的?ABA.是由不同的亚基组成的多聚复合物B.对同一底物具有不同的Km值C.在电泳分离时它们的迁移率相同D.免疫学性质相同
6.常见的酶活性中心的必需基团有:BCDA.半胱氨酸和胱氨酸的巯基B.组氨酸的咪唑基C.谷氨酸,天冬氨酸的侧链羧基D.丝氨酸的羟基
7.酶的专一性可分为:BCDA.作用物基团专一性B.相对专一性C.立体异构专一性D.绝对专一性
8.有关变构酶的叙述是:ACDA.大多数变构酶是多聚复合物B.是体内快速调节酶含量的重要方式C.可有调节亚基和催化亚基D.酶从一种构象转变为另一种构象时,酶活性发生改变
9.影响酶促反应的因素有:ABCDA.温度,pH值B.作用物浓度C.激动剂D.酶本身的浓度
10.酶的活性中心是指:ABA.是由必需基团组成的具有一定空间构象的区域B.是指结合底物,并将其转变成产物的区域C.是变构剂直接作用的区域D.是重金属盐沉淀酶的结合区域
三、填空题1.结合蛋白酶类必需由_酶蛋白___和___辅酶(辅基)__相结合后才具有活性,前者的作用是决定酶的促反应的专一性(特异性)__,后者的作用是___传递电子、原子或基团即具体参加反应__。2.酶促反应速度(v)达到最大速度(Vm)的80%时,底物浓度[S]是Km的__4_倍;而v达到Vm90%时,[S]则是Km的_9___倍。3.不同酶的Km__不同_,同一种酶有不同底物时,Km值_也不同___,其中Km值最小的底物是酶的最适底物。4._竞争性__抑制剂不改变酶反应的Vm。5非竞争性_抑制剂不改变酶反应的Km值。6.乳酸脱氢酶(LDH)是__四__聚体,它由_H__和_M__亚基组成,有_5__种同工酶,其中LDH1含量最丰富的是_心肌___组织。7.L-精氨酸只能催化L-精氨酸的水解反应,对D-精氨酸则无作用,这是因为该酶具有_立体异构__专一性。8.酶所催化的反应称__酶的反应__,酶所具有的催化能力称_酶的活性___。生物化学第四章
糖代谢
测试题一、单项选择题1.正常人清晨空腹血糖浓度为(以mg/100ml)计:CA.60~100B.60~120C.70~110D.80~120E.100~120
2.糖代谢中间产物中含有高能磷酸键的是:EA.6-磷酸葡萄糖B.6-磷酸果糖C.1,6-二磷酸果糖D.3-磷酸甘油醛E.1.3-二磷酸甘油酸
3.丙酮酸氧化脱羧生成乙酰辅酶A与许多维生素有关,但除外:CA.B1B.B2C.B6D.PPE.泛酸
4.在糖原合成中作为葡萄糖载体的是:EA.ADPB.GDPC.CDPD.TDPE.UDP
5.下列哪个激素可使血糖浓度下降?EA.肾上腺素B.胰高血糖素C.生长素D.糖皮质激素E.胰岛素
6.下列哪一个酶与丙酮酸生成糖无关?BA.果糖二磷酸酶B.丙酮酸激酶C.丙酮酸羧化酶D.醛缩酶E.磷酸烯醇式丙酮酸羧激酶
7.肌糖原分解不能直接补充血糖的原因是:CA.肌肉组织是贮存葡萄糖的器官B.肌肉组织缺乏葡萄糖激酶C.肌肉组织缺乏葡萄糖-6-磷酸酶D.肌肉组织缺乏磷酸酶E.肌糖原分解的产物是乳酸
8.葡萄糖与甘油之间的代谢中间产物是:CA.丙酮酸B.3-磷酸甘油酸C.磷酸二羟丙酮D.磷酸烯醇式丙酮酸E.乳酸
9.1分子葡萄糖酵解时净生成多少个ATP?BA.1B.2C.3D.4E.5
10.磷酸果糖激酶的最强变构激活剂是:DA.AMPB.ADPC.ATPD.2,6-二磷酸果糖E.1,6-二磷酸果糖
11.三羧酸循环和有关的呼吸链反应中能产生ATP最多的步骤是:CA.柠檬酸→异柠檬酸B.异柠檬酸→α-酮戊二酸C.α-酮戊二酸→琥珀酸D.琥珀酸→苹果酸E.苹果酸→草酰乙酸
12.丙酮酸羧化酶的活性可被下列哪种物质激活?DA.脂肪酰辅酶AB.磷酸二羟丙酮C.异柠檬酸D.乙酰辅酶AE.柠檬酸
13.下列化合物异生成葡萄糖时净消耗ATP最多的是:CA.2分子甘油B.2分子乳酸C.2分子草酰乙酸D.2分子琥珀酸E.2分子α-酮戊二酸
14.位于糖酵解、糖异生、磷酸戊糖途径、糖原合成和糖原分解各条代谢途径交汇点上的化合物是:BA.1-磷酸葡萄糖B.6-磷酸葡萄糖C.1,6-二磷酸果糖D.3-磷酸甘油酸E.6-磷酸果糖
15.红细胞中还原型谷胱甘肽不足,易引起溶血,原因是缺乏:DA.葡萄糖-6-磷酸酶B.果糖二磷酸酶C.磷酸果糖激酶D.6-磷酸葡萄糖脱氢酶E.葡萄糖激酶
二、多项选择题(在备选答案中有二个或二个以上是正确的,错选或未选全的均不给分)1.从葡萄糖合成糖原需要哪些核苷酸参与:ABA.ATPB.GTPC.UTPD.CTP
2.磷酸戊糖途径的重要生理功能是生成:CDA.6-磷酸葡萄糖B.NADH+H+C.NADPH+H+D.5-磷酸核糖
3.1分子丙酮进入三羧酸循环及呼吸链氧化时:ABDA.生成3分子CO2B.生成15个ATPC.有5次脱氢,均通过NAOH进入呼吸链氧化生成H2OD.所有反应均在线粒体内进行
4.三羧酸循环中不可逆的反应有:ABCA.乙酰辅酶A+草酰乙酸→柠檬酸B.异柠檬酸→α-酮戊二酸C.α-酮戊二酸→琥珀酰辅酶AD.琥珀酰辅酶A→琥珀酸
5.糖异生途径的关键酶是:ABDA.丙酮酸羧化酶B.磷酸烯醇式丙酮酸羧激酶C.磷酸甘油激酶D.磷酸二磷酸酶
6.只在胞液中进行的糖代谢途径有:ACA.糖酵解B.糖异生C.磷酸戊糖途径D.三羧酸循环
7.糖异生的原料有:ABCDA.乳酸B.甘油C.部分氨基酸D.丙酮酸
8.丙酮酸脱氢酶系的辅助因子有:ABCDA.FADB.TPPC.NAD+D.CoA
9.能使血糖浓度升高的激素有:ABA.生长素B.肾上腺素C.胰岛素D.甲状旁腺素
10.葡萄糖有氧氧化中,通过作用物水平磷酸化直接生成的高能化合物有:ABA.ATPB.GTPC.UTPD.CTP
11.指出下列胰岛素对糖代谢影响的正确论述:BCDA.促进糖的异生B.促进糖变为脂肪C.促进细胞膜载体转运葡萄糖入细胞D.促进糖原合成
12.糖无氧酵解和有氧氧化途径都需要:BCA.乳酸脱氢酶B.3-磷酸甘油醛脱氢酶C.磷酸果糖激酶D.丙酮酸脱氢酶系
13.葡萄糖进入肌肉细胞后可以进行的代谢是:BCDA.糖异生B.糖原合成C.有氧氧化D.糖酵解
14.肝脏对血糖的调节是通过:ACDA.糖异生B.糖有氧氧化C.糖原分解D.糖原合成
15.琥珀酰辅酶A在代谢中的作用有:ABCDA.是糖异生的原料B.是三羧酸循环中作用物水平上磷酸化的供能物质C.氧化供能D.参与酮体氧化
三、填空题1.糖原合成的关键酶是_糖原合成酶__;糖原分解的关键是__磷酸化酶____。2.糖酵解中催化作用物水平磷酸化的两个酶是_磷酸甘油酸激酶和丙酮酸激酶。3.糖酵解途径的关键酶是_己糖激酶(葡萄糖激酶)__、_磷酸果糖激酶___和丙酮酸激酶。4.丙酮酸脱氢酶系由丙酮酸脱氢酶、辛酸乙酰移换酶_____和__硫二氢硫辛酸脱氧酶___组成。5.三羧酸循环过程中有__4___次脱氢和_2_次脱羧反应。6.__肝_是糖异生中最主要器官,_肾____也具有糖异生的能力。7.三羧酸循环过程主要的关键酶是异柠檬酸脱氢酶__;每循环一周可生成_11__个ATP。8.1个葡萄糖分子经糖酵解可生成_2___个ATP;糖原中有1个葡萄糖残基经糖酵解可生成__3____个ATP。7.8.23生物化学第五章
脂类代谢
测试题一、单项选择题1.脂肪酸在血中与下列哪种物质结合运输?BA.载脂蛋白B.清蛋白C.球蛋白D.脂蛋白E.磷脂
2.关于载脂蛋白(Apo)的功能,在下列叙述中不正确的是:DA.与脂类结合,在血浆中转运脂类B.ApoAⅠ能激活LCATC.ApoB能识别细胞膜上的LDL受体D.ApoCⅠ能激活脂蛋白脂肪酶E.ApoCⅡ能激活LPL
3.正常血浆脂蛋白按密度低→高顺序的排列为:BA.CM→VLDL→IDL→LDLB.CM→VLDL→LDL→HDLC.VLDL→CM→LDL→HDLD.VLDL→LDL→IDL→HDLE.VLDL→LDL→HDL→CM
4.电泳法分离血浆脂蛋白时,从正极→负极依次顺序的排列为:DA.CM→VLDL→LDL→HDLB.VLDL→LDL→HDL→CMC.LDL→HDL→VLDL→CMD.HDL→VLDL→LDL→CME.HDL→LDL→VLDL→CM
5.胆固醇含量最高的脂蛋白是:DA.乳糜微粒B.极低密度脂蛋白C.中间密度脂蛋白D.低密度脂蛋白E.高密度脂蛋白
6.导致脂肪肝的主要原因是:EA.食入脂肪过多B.食入过量糖类食品C.肝内脂肪合成过多D.肝内脂肪分解障碍E.肝内脂肪运出障碍
7.脂肪动员的关键酶是:DA.组织细胞中的甘油三酯酶B.组织细胞中的甘油二酯脂肪酶C.组织细胞中的甘油一酯脂肪酶D.组织细胞中的激素敏感性脂肪酶E.脂蛋白脂肪酶
8.脂肪酸彻底氧化的产物是:EA.乙酰CoAB.脂酰CoAC.丙酰CoAD.乙酰CoA及FAD?2H、NAD++H+E.H2O、CO2及释出的能量
9、关于酮体的叙述,哪项是正确的?CA.酮体是肝内脂肪酸大量分解产生的异常中间产物,可造成酮症酸中毒B.各组织细胞均可利用乙酰CoA合成酮体,但以肝内合成为主C.酮体只能在肝内生成,肝外氧化D.合成酮体的关键酶是HMGCoA还原酶E.酮体氧化的关键是乙酰乙酸转硫酶
10.酮体生成过多主要见于:EA.摄入脂肪过多B.肝内脂肪代谢紊乱C.脂肪运转障碍D.肝功低下E.糖供给不足或利用障碍
11.关于脂肪酸合成的叙述,不正确的是:EA.在胞液中进行B.基本原料是乙酰CoA和NADPH+H+C.关键酶是乙酰CoA羧化酶D.脂肪酸合成酶为多酶复合体或多功能酶E.脂肪酸合成过程中碳链延长需乙酰CoA提供乙酰基
12.甘油氧化分解及其异生成糖的共同中间产物是:DA.丙酮酸B.2-磷酸甘油酸C.3-磷酸甘油酸D.磷酸二羟丙酮E.磷酸烯醇式丙酮酸
13.体内合成卵磷脂时不需要:BA.ATP与CTPB.NADPH+H+C.甘油二酯D.丝氨酸E.S-腺苷蛋氨酸
14.合成胆固醇的限速酶是:DA.HMGCoA合成酶B.HMG合成酶与裂解酶C.HMG还原酶D.HMGCoA还原酶E.HMG合成酶与还原酶
15.胆固醇在体内不能转化生成:CA.胆汁酸B.肾上腺素皮质素C.胆色素D.性激素E.维生素D3
二、多项选择题1.人体必需脂肪酸包括:CDEA.软油酸B.油酸C.亚油酸D.亚麻酸
2.使激素敏感性脂肪酶活性增强,促进脂肪动员的激素有:BCDA.胰岛素B.胰高血糖素C.肾上腺素D.促肾上腺皮质激素
3.低密度脂蛋白:ACA.在血浆中由前β-脂蛋白转变而来B.是在肝脏中合成的C.胆固醇含量最多D.富含apoB100
4.临床上的高脂血症可见于哪些脂蛋白含量增高?BDA.CMB.VLDLC.IDLD.LDL
5.脂肪酸β-氧化的产物有:ACDA.NADH+H+B.NADPH+H+C.FAD?2HD.乙酰CoA
6.乙酰CoA在不同组织中均可生成:ABDA.CO2、H2O和能量B.脂肪酸C.酮体D.胆固醇7.能产生乙酰CoA的物质有:ABCDA.葡萄糖B.脂肪C.酮体D.氨基酸
8.酮体:ABDA.水溶性比脂肪酸大B.可随尿排出C.是脂肪酸分解代谢的异常产物D.在血中含量过高可导致酸中毒
9.合成酮体和胆固醇均需:ACA.乙酰CoAB.NADPH+H+C.HMGCoA合成酶D.HMGCoA裂解酶
10.能将酮体氧化利用的组织或细胞是:ACDA.心肌B.肝C.肾D.脑
11.出现酮症的病因可有:ACDA.糖尿病B.缺氧C.糖供给不足或利用障碍D.持续高烧不能进食
12.合成脑磷脂、卵磷脂的共同原料是:ABCA.α-磷酸甘油B.脂肪酸C.丝氨酸D.S-腺苷蛋氨酸
13.卵磷脂在磷脂酶A2作用下,生成:AA.溶血卵磷脂B.α-磷酸甘油C.磷脂酸D.饱和脂肪酸
14.血浆中胆固醇酯化需要:CDA.脂酰CoAB.乙酰CoAC.卵磷脂D.LCAT
15.乙酰CoA是合成下列哪些物质的唯一碳源BDA.卵磷脂B.胆固醇C.甘油三酯D.胆汁酸
三、填空题1.乳糜微粒在_小肠粘膜__合成,它主要运输_外源性脂肪__;极低密度脂蛋白在_肝脏,它主要运输_内源性脂肪,蛋白在__血中_生成,其主要功用为_将胆固醇由肝内向肝外转运____;高密度脂蛋白在_肝脏__生成,其主要功用为_将胆固醇由肝外向肝内转运___。2.脂肪酸分解过程中,长键脂酰CoA进入线粒体需由_肉碱____携带,限速酶是_脂酰-内碱转移酶Ⅰ__;脂肪酸合成过程中,线粒体的乙酰CoA出线粒体需与_草酰乙酸__结合成__柠檬酸__。3.脂蛋白的甘油三酯受_脂蛋白脂肪(LPL)__酶催化脂肪解而脂肪组织中的甘油三酯受_激素敏感性脂肪酶__酶催化水解,限速酶是_(甘油三酯脂肪酶)___。4.脂肪酸的β-氧化在细胞的_线粒体___内进行,它包括_脱氢___、_加水___、_(再)脱氢___和_硫解___四个连续反应步骤。每次β-氧化生成的产物是_1分子乙酰CoA__比原来少两个碳原子的新酰CoA___。5.脂肪酸的合成在_胞液__进行,合成原料中碳源是_乙酰CoA___并以_丙二乙酰CoA__形式参与合成;供氢体是_NADPH+H+__,它主要来自_磷酸戊糖途径_。6.乙酰CoA的来源有_糖,肪,酸酮体。7.乙酰CoA的去路有_进入三羧酸循环氧化供能__、__、_合成非必需脂肪酸__和_合成胆固醇___合成酮体。8.血液中胆固醇酯化,需_卵磷脂-胆固醇酰基转移酶(LCAT)__酶催化;组织细胞内胆固醇酯化需_脂酰-胆固醇酰基转移酶(ACAT)___酶催化
生物化学第七章
氨基酸代谢
测试题一、单项选择题1.生物体内氨基酸脱氨基的主要方式为:EA.氧化脱氨基B.还原脱氨基C.直接脱氨基D.转氨基E.联合脱氨基
2.成人体内氨的最主要代谢去路为:DA.合成非必需氨基酸B.合成必需氨基酸C.合成NH4+承尿排出D.合成尿素E.合成嘌呤、嘧啶、核苷酸等
3.转氨酶的辅酶组分含有:BA.泛酸B.吡哆醛(或吡哆胺)C.尼克酸D.核黄素E.硫胺素
4.GPT(ALT)活性最高的组织是:DA.心肌B.脑C.骨骼肌D.肝E.肾
5.嘌呤核苷酸循环脱氨基作用主要在哪些组织中进行?DA.肝B.肾C.脑D.肌肉E.肺
6.嘌呤核苷酸循环中由IMP生成AMP时,氨基来自:AA.天冬氨酸的α-氨基B.氨基甲酰磷酸C.谷氨酸的α-氨基D.谷氨酰胺的酰胺基E.赖氨酸上的氨基
7.在尿素合成过程中,下列哪步反应需要ATP?BA.鸟氨酸+氨基甲酰磷酸→瓜氨酸+磷酸B.瓜氨酸+天冬氨酸→精氨酸代琥珀酸C.精氨酸代琥珀酸→精氨酸+延胡素酸D.精氨酸→鸟氨酸+尿素E.草酰乙酸+谷氨酸→天冬氨酸+α-酮戊二酸
8.鸟氨酸循环的限速酶是:CA.氨基甲酰磷酸合成酶ⅠB.鸟氨酸氨基甲酰转移酶C.精氨酸代琥珀酸合成酶D.精氨酸代琥珀酸裂解酶E.精氨酸酶
9.氨中毒的根本原因是:DA.肠道吸收氨过量B.氨基酸在体内分解代谢增强C.肾功能衰竭排出障碍D.肝功能损伤,不能合成尿素E.合成谷氨酸酰胺减少
10.体内转运一碳单位的载体是:EA.叶酸B.维生素B12C.硫胺素D.生物素E.四氢叶酸
11.下列哪一种化合物不能由酪氨酸合成?DA.甲状腺素B.肾上腺素C.多巴胺D.苯丙氨酸E.黑色素
12.下列哪一种氨基酸是生酮兼生糖氨基酸?BA.丙氨酸B.苯丙氨酸C.丝氨酸1D.羟脯氨酸E.亮氨酸
13.鸟氨酸循环中,合成尿素的第二分子氨来源于:DA.游离氨B.谷氨酰胺C.天冬酰胺D.天冬氨酸E.氨基甲酰磷酸
14.下列中心哪一种物质是体内氨的储存及运输形式?CA.谷氨酸B.酪氨酸C.谷氨酰胺D.谷胱甘肽E.天冬酰胺
15.白化症是由于先天性缺乏:CA.酪氨酸转氨酶B.苯丙氨酸羟化酶C.酪氨酸酶D.尿黑酸氧化酶E.对羟苯丙氨酸氧化酶
二、多项选择题1.体内提供一碳单位的氨基酸有:ACDA.甘氨酸B.亮氨酸C.色氨酸D.组氨酸
2.生酮氨基酸有:DEA.酪氨酸B.鸟氨酸C.亮氨酸D.赖氨酸
3.组织之间氨的主要运输形式有:CDA.NH4ClB.尿素C.丙氨酸D.谷氨酰胺
4.一碳单位的主要形式有:ABCDA.-CH=NHB.-CHOC.-CH2-D.-CH3
5.直接参与鸟氨酸循环的氨基酸有:ABA.鸟氨酸,瓜氨酸,精氨酸B.天冬氨酸C.谷氨酸或谷氨酰胺D.N-乙酰谷氨酸
6.血氨(NH3)来自:ABCA.氨基酸氧化脱下的氨B.肠道细菌代谢产生的氨C.含氮化合物分解产生的氨D.转氨基作用生成的氨
7.由S-腺苷蛋氨酸提供甲基而生成的物质是:ABDA.肾上腺素B.胆碱C.胸腺嘧啶D.肌酸
8.合成活性硫酸根(PAPS)需要:BDA.酪氨酸B.半胱氨酸C.GTPD.ATP
9.苯丙氨酸和酪氨酸代谢缺陷时可能导致:ABA.白化病B.尿黑酸症C.镰刀弄贫血D.蚕豆黄
10.当体内FH4缺乏时,下列哪些物质合成受阻?CDA.脂肪酸B.糖原C.嘌呤核苷酸D.RNA和DNA
生物化学第九章
物质代谢的联系与调节测试题
一、单项选择题1.糖类、脂类、氨基酸氧化分解时,进入三羧酸循环的主要物质是:CA.丙酮酸B.α-磷酸甘油C.乙酰-CoAD.草酰乙酸E.α-酮戊二酸
2.细胞水平的调节通过下列机制实现,但应除外:DA.变构调节B.化学修饰C.同工酶调节D.激素调节E.酶含量调节3.变构剂调节的机理是:BA.与必需基团结合B.与调节亚基或调节部位结合C.与活性中心结合D.与辅助因子结合E.与活性中心内的催化部位结合
4.胞浆内可以进行下列代谢反应,但应除外:CA.糖酵解B.磷酸戊糖途径C.脂肪酸β-氧化D.脂肪酸合成E.糖原合成与分解
5.下列哪种酶属于化学修饰酶?DA.己糖激酶B.葡萄糖激酶C.丙酮酸羧激酶D.糖原合酶E.柠檬酸合酶
6.长期饥饿时大脑的能量来源主要是:DA.葡萄糖B.氨基酸C.甘油D.酮体E.糖原
7.cAMP通过激活哪个酶发挥作用?AA.蛋白激酶AB.己糖激酶C.脂肪酸合成酶D.磷酸化酶b激酶E.丙酮酸激酶
8.cAMP发挥作用的方式是:DA.cAMP与蛋白激酶的活性中心结合B.cAMP与蛋白激酶活性中心外必需基团结合C.cAMP使蛋白激酶磷酸化D.cAMP与蛋白激酶调节亚基结合E.cAMP使蛋白激酶脱磷酸
9.作用于细胞内受体的激素是:AA.类固醇激素B.儿茶酚胺类激素C.生长因子D.肽类激素E.蛋白类激素
10.肽类激素诱导cAMP生成的过程是:DA.激素直接激活腺苷酸环化酶B.激素直接抑制磷酸二酯酶C.激素受体复合物活化腺苷酸环化酶D.激素受体复合物使G蛋白结合GTP而活化,后者再激活腺苷酸环化酶E.激素激活受体,受体再激活腺苷酸环化酶
二、多项选择题1.既涉及胞液又涉及线粒体的代谢过程有:ABCDA.糖异生B.尿素合成C.葡萄糖转变为脂肪D.脂肪酸的氧化
2.可以作为第二信使的物质是:ABCDA.cAMPB.DGC.IP3D.cGMP
3.饥饿时体内的代谢可能发生下列变化:ABCDA.糖异生↑B.脂肪分解↑C.血酮体↑D.血中游离脂肪酸↑
4.变构调节的特点是:ABCA.变构剂与酶分子上的非催化部位结合B.使酶蛋白构象发生改变,从而改变酶活性C.酶分子多有调节亚基和催化亚基D.变构调节都产生正效应,即加快反应速度
5.作用于膜受体的激素有:ACA.肾上腺素B.甲状腺素C.胰岛素D.雌激素
6.关于酶化学修饰:ABCDA.引起酶蛋白发生共价变化B.使酶活性改变C.有效大效应D.磷酸化与脱磷酸化最常见
7.关于糖原分解中酶化学修饰的下列描述中,正确的有:BCDA.有活性的磷酸化酶b激酶被磷酸化成为无活性的磷酸化酶b激酶B.有活性的磷酸化酶b激酶催化磷酸化酶b磷酸化C.磷酸化酶a为磷酸化酶的有活性形式D.蛋白激酶A活性增强时,糖原分解增强
三、填空题1.化学修饰最常见的方式是磷酸化,可使糖原合成酶__降低___,磷酸化酶活性__增高___。2.在磷脂酰肌醇信息传递体系中,膜上的磷脂酰肌醇可被水解产生第二信使_IP3___和_DG___。3.在_腺苷酸环化酶____酶的作用下,细胞内cAMP水平增高;在_磷酸二酯酶_____酶的作用下,细胞内cAMP可被水解而降低。4.蛋白激酶A的激活通过_变构调节___方式;磷酸化酶b激酶的激活通过__化学修饰____方式。5.蛋白激酶A使作用物中__丝氨酸或苏氨酸_____氨基酸残基磷酸化;蛋白激酶C使作用物中_丝氨酸或苏氨酸____氨基酸残基磷酸化。
第一章绪论
一、生物化学的的概念:
生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:
1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:
1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第二章蛋白质的结构与功能
一、氨基酸:
1.结构特点:氨基酸(aminoacid)是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:
肽键(peptidebond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端→C端。
三、肽键平面(肽单位):
肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个α碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。
四、蛋白质的分子结构:
蛋白质的分子结构可人为分为一级、二级、三级和四级结构等层次。一级结构为线状结构,二、三、四级结构为空间结构。
1.一级结构:指多肽链中氨基酸的排列顺序,其维系键是肽键。蛋白质的一级结构决定其空间结构。
2.二级结构:指多肽链主链骨架盘绕折叠而形成的构象,借氢键维系。主要有以下几种类型:
⑴α-螺旋:其结构特征为:①主链骨架围绕中心轴盘绕形成右手螺旋;②螺旋每上升一圈是3.6个氨基酸残基,螺距为0.54nm;③相邻螺旋圈之间形成许多氢键;④侧链基团位于螺旋的外侧。
影响α-螺旋形成的因素主要是:①存在侧链基团较大的氨基酸残基;②连续存在带相同电荷的氨基酸残基;③存在脯氨酸残基。
⑵β-折叠:其结构特征为:①若干条肽链或肽段平行或反平行排列成片;②所有肽键的C=O和N—H形成链间氢键;③侧链基团分别交替位于片层的上、下方。
⑶β-转角:多肽链180°回折部分,通常由四个氨基酸残基构成,借1、4残基之间形成氢键维系。
⑷无规卷曲:主链骨架无规律盘绕的部分。
3.三级结构:指多肽链所有原子的空间排布。其维系键主要是非共价键(次级键):氢键、疏水键、范德华力、离子键等,也可涉及二硫键。
4.四级结构:指亚基之间的立体排布、接触部位的布局等,其维系键为非共价键。亚基是指参与构成蛋白质四级结构的而又具有独立三级结构的多肽链。
五、蛋白质的理化性质:
1.两性解离与等电点:蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸一样具有两性解离的性质。蛋白质分子所带正、负电荷相等时溶液的pH值称为蛋白质的等电点。
2.蛋白质的胶体性质:蛋白质具有亲水溶胶的性质。蛋白质分子表面的水化膜和表面电荷是稳定蛋白质亲水溶胶的两个重要因素。
3.蛋白质的紫外吸收:蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强,最大吸收峰为280nm。
4.蛋白质的变性:蛋白质在某些理化因素的作用下,其特定的空间结构被破坏而导致其理化性质改变及生物活性丧失,这种现象称为蛋白质的变性。引起蛋白质变性的因素有:高温、高压、电离辐射、超声波、紫外线及有机溶剂、重金属盐、强酸强碱等。绝大多数蛋白质分子的变性是不可逆的。
六、蛋白质的分离与纯化:
1.盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。常用的中性盐有:硫酸铵、氯化钠、硫酸钠等。盐析时,溶液的pH在蛋白质的等电点处效果最好。凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。
2.电泳:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。
3.透析:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。
4.层析:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离。主要有离子交换层析,凝胶层析,吸附层析及亲和层析等,其中凝胶层析可用于测定蛋白质的分子量。
5.超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离。超速离心也可用来测定蛋白质的分子量,蛋白质的分子量与其沉降系数S成正比。
七、氨基酸顺序分析:
蛋白质多肽链的氨基酸顺序分析,即蛋白质一级结构的测定,主要有以下几个步骤:
1.分离纯化蛋白质,得到一定量的蛋白质纯品;
2.取一定量的样品进行完全水解,再测定蛋白质的氨基酸组成;
3.分析蛋白质的N-端和C-端氨基酸;
4.采用特异性的酶(如胰凝乳蛋白酶)或化学试剂(如溴化氰)将蛋白质处理为若干条肽段;
5.分离纯化单一肽段;
6.测定各条肽段的氨基酸顺序。一般采用Edman降解法,用异硫氰酸苯酯进行反应,将氨基酸降解后,逐一进行测定;
7.至少用两种不同的方法处理蛋白质,分别得到其肽段的氨基酸顺序;
8.将两套不同肽段的氨基酸顺序进行比较,以获得完整的蛋白质分子的氨基酸顺序。
第三章核酸的结构与功能
一、核酸的化学组成:
1.含氮碱:参与核酸和核苷酸构成的含氮碱主要分为嘌呤碱和嘧啶碱两大类。组成核苷酸的嘧啶碱主要有三种——尿嘧啶(U)、胞嘧啶(C)和胸腺嘧啶(T),它们都是嘧啶的衍生物。组成核苷酸的嘌呤碱主要有两种——腺嘌呤(A)和鸟嘌呤(G),它们都是嘌呤的衍生物。
2.戊糖:核苷酸中的戊糖主要有两种,即β-D-核糖与β-D-2-脱氧核糖,由此构成的核苷酸也分为核糖核苷酸与脱氧核糖核酸两大类。
3.核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物。通常是由核糖或脱氧核糖的C1’β-羟基与嘧啶碱N1或嘌呤碱N9进行缩合,故生成的化学键称为β,N糖苷键。其中由D-核糖生成者称为核糖核苷,而由脱氧核糖生成者则称为脱氧核糖核苷。由“稀有碱基”所生成的核苷称为“稀有核苷”。假尿苷(ψ)就是由D-核糖的C1’与尿嘧啶的C5相连而生成的核苷。
二、核苷酸的结构与命名:
核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核酸两大类。最常见的核苷酸为5’-核苷酸(5’常被省略)。5’-核苷酸又可按其在5’位缩合的磷酸基的多少,分为一磷酸核苷(核苷酸)、二磷酸核苷和三磷酸核苷。
此外,生物体内还存在一些特殊的环核苷酸,常见的为环一磷酸腺苷(cAMP)和环一磷酸鸟苷(cGMP),它们通常是作为激素作用的第二信使。
核苷酸通常使用缩写符号进行命名。第一位符号用小写字母d代表脱氧,第二位用大写字母代表碱基,第三位用大写字母代表磷酸基的数目,第四位用大写字母P代表磷酸。
三、核酸的一级结构:
核苷酸通过3’,5’-磷酸二酯键连接起来形成的不含侧链的多核苷酸长链化合物就称为核酸。核酸具有方向性,5’-位上具有自由磷酸基的末端称为5’-端,3’-位上具有自由羟基的末端称为3’-端。
DNA由dAMP、dGMP、dCMP和dTMP四种脱氧核糖核苷酸所组成。DNA的一级结构就是指DNA分子中脱氧核糖核苷酸的种类、数目、排列顺序及连接方式。RNA由AMP,GMP,CMP,UMP四种核糖核苷酸组成。RNA的一级结构就是指RNA分子中核糖核苷酸的种类、数目、排列顺序及连接方式。
四、DNA的二级结构:
DNA双螺旋结构是DNA二级结构的一种重要形式,它是Watson和Crick两位科学家于1953年提出来的一种结构模型,其主要实验依据是Chargaff研究小组对DNA的化学组成进行的分析研究,即DNA分子中四种碱基的摩尔百分比为A=T、G=C、A+G=T+C(Chargaff原则),以及由Wilkins研究小组完成的DNA晶体X线衍射图谱分析。
天然DNA的二级结构以B型为主,其结构特征为:①为右手双螺旋,两条链以反平行方式排列;②主链位于螺旋外侧,碱基位于内侧;③两条链间存在碱基互补,通过氢键连系,且A-T、G-C(碱基互补原则);④螺旋的稳定因素为氢键和碱基堆砌力;⑤螺旋的螺距为3.4nm,直径为2nm。
五、DNA的超螺旋结构:
双螺旋的DNA分子进一步盘旋形成的超螺旋结构称为DNA的三级结构。
绝大多数原核生物的DNA都是共价封闭的环状双螺旋,其三级结构呈麻花状。
在真核生物中,双螺旋的DNA分子围绕一蛋白质八聚体进行盘绕,从而形成特殊的串珠状结构,称为核小体。核小体结构属于DNA的三级结构。
六、DNA的功能:
DNA的基本功能是作为遗传信息的载体,为生物遗传信息复制以及基因信息的转录提供模板。
DNA分子中具有特定生物学功能的片段称为基因(gene)。一个生物体的全部DNA序列称为基因组(genome)。基因组的大小与生物的复杂性有关。
七、RNA的空间结构与功能:
RNA分子的种类较多,分子大小变化较大,功能多样化。RNA通常以单链存在,但也可形成局部的双螺旋结构。
1.mRNA的结构与功能:mRNA是单链核酸,其在真核生物中的初级产物称为HnRNA。大多数真核成熟的mRNA分子具有典型的5’-端的7-甲基鸟苷三磷酸(m7GTP)帽子结构和3’-端的多聚腺苷酸(polyA)尾巴结构。mRNA的功能是为蛋白质的合成提供模板,分子中带有遗传密码。mRNA分子中每三个相邻的核苷酸组成一组,在蛋白质翻译合成时代表一个特定的氨基酸,这种核苷酸三联体称为遗传密码(coden)。
2.tRNA的结构与功能:tRNA是分子最小,但含有稀有碱基最多的RNA。tRNA的二级结构由于局部双螺旋的形成而表现为“三叶草”形,故称为“三叶草”结构,可分为五个部分:①氨基酸臂:由tRNA的5’-端和3’-端构成的局部双螺旋,3’-端都带有-CCA-OH顺序,可与氨基酸结合而携带氨基酸。②DHU臂:含有二氢尿嘧啶核苷,与氨基酰tRNA合成酶的结合有关。③反密码臂:其反密码环中部的三个核苷酸组成三联体,在蛋白质生物合成中,可以用来识别mRNA上相应的密码,故称为反密码(anticoden)。④TψC臂:含保守的TψC顺序,可以识别核蛋白体上的rRNA,促使tRNA与核蛋白体结合。⑤可变臂:位于TψC臂和反密码臂之间,功能不详。
3.rRNA的结构与功能:rRNA是细胞中含量最多的RNA,可与蛋白质一起构成核蛋白体,作为蛋白质生物合成的场所。原核生物中的rRNA有三种:5S,16S,23S。真核生物中的rRNA有四种:5S,5.8S,18S,28S。
八、核酶:
具有自身催化作用的RNA称为核酶(ribozyme),核酶通常具有特殊的分子结构,如锤头结构。
九、核酸的一般理化性质:
核酸具有酸性;粘度大;能吸收紫外光,最大吸收峰为260nm。
十、DNA的变性:
在理化因素作用下,DNA双螺旋的两条互补链松散而分开成为单链,从而导致DNA的理化性质及生物学性质发生改变,这种现象称为DNA的变性。
引起DNA变性的因素主要有:①高温,②强酸强碱,③有机溶剂等。DNA变性后的性质改变:①增色效应:指DNA变性后对260nm紫外光的光吸收度增加的现象;②旋光性下降;③粘度降低;④生物功能丧失或改变。
加热DNA溶液,使其对260nm紫外光的吸收度突然增加,达到其最大值一半时的温度,就是DNA的变性温度(融解温度,Tm)。Tm的高低与DNA分子中G+C的含量有关,G+C的含量越高,则Tm越高。
十一、DNA的复性与分子杂交:
将变性DNA经退火处理,使其重新形成双螺旋结构的过程,称为DNA的复性。
两条来源不同的单链核酸(DNA或RNA),只要它们有大致相同的互补碱基顺序,以退火处理即可复性,形成新的杂种双螺旋,这一现象称为核酸的分子杂交。核酸杂交可以是DNA-DNA,也可以是DNA-RNA杂交。不同来源的,具有大致相同互补碱基顺序的核酸片段称为同源顺序。
常用的核酸分子杂交技术有:原位杂交、斑点杂交、Southern杂交及Northern杂交等。
在核酸杂交分析过程中,常将已知顺序的核酸片段用放射性同位素或生物素进行标记,这种带有一定标记的已知顺序的核酸片段称为探针。
十二、核酸酶:
凡是能水解核酸的酶都称为核酸酶。凡能从多核苷酸链的末端开始水解核酸的酶称为核酸外切酶,凡能从多核苷酸链中间开始水解核酸的酶称为核酸内切酶。能识别特定的核苷酸顺序,并从特定位点水解核酸的内切酶称为限制性核酸内切酶(限制酶)
第四章酶
一、酶的概念:
酶(enzyme)是由活细胞产生的生物催化剂,这种催化剂具有极高的催化效率和高度的底物特异性,其化学本质是蛋白质。酶按照其分子结构可分为单体酶、寡聚酶和多酶体系(多酶复合体和多功能酶)三大类。
二、酶的分子组成:
酶分子可根据其化学组成的不同,可分为单纯酶和结合酶(全酶)两类。结合酶则是由酶蛋白和辅助因子两部分构成,酶蛋白部分主要与酶的底物特异性有关,辅助因子则与酶的催化活性有关。
与酶蛋白疏松结合并与酶的催化活性有关的耐热低分子有机化合物称为辅酶。与酶蛋白牢固结合并与酶的催化活性有关的耐热低分子有机化合物称为辅基。
三、辅酶与辅基的来源及其生理功用:
辅酶与辅基的生理功用主要是:⑴运载氢原子或电子,参与氧化还原反应。⑵运载反应基团,如酰基、氨基、烷基、羧基及一碳单位等,参与基团转移。大部分的辅酶与辅基衍生于维生素。
维生素(vitamin)是指一类维持细胞正常功能所必需的,但在许多生物体内不能自身合成而必须由食物供给的小分子有机化合物。
维生素可按其溶解性的不同分为脂溶性维生素和水溶性维生素两大类。脂溶性维生素有VitA、VitD、VitE和VitK四种;水溶性维生素有VitB1,VitB2,VitPP,VitB6,VitB12,VitC,泛酸,生物素,叶酸等。
1.TPP:即焦磷酸硫胺素,由硫胺素(VitB1)焦磷酸化而生成,是脱羧酶的辅酶,在体内参与糖代谢过程中α-酮酸的氧化脱羧反应。
2.FMN和FAD:即黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),是核黄素(VitB2)的衍生物。FMN或FAD通常作为脱氢酶的辅基,在酶促反应中作为递氢体(双递氢体)。
3.NAD+和NADP+:即尼克酰胺腺嘌呤二核苷酸(NAD+,辅酶Ⅰ)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+,辅酶Ⅱ),是VitPP的衍生物。NAD+和NADP+主要作为脱氢酶的辅酶,在酶促反应中起递氢体的作用,为单递氢体。
4.磷酸吡哆醛和磷酸吡哆胺:是VitB6的衍生物。磷酸吡哆醛和磷酸吡哆胺可作为氨基转移酶,氨基酸脱羧酶,半胱氨酸脱硫酶等的辅酶。
5.CoA:泛酸(遍多酸)在体内参与构成辅酶A(CoA)。CoA中的巯基可与羧基以高能硫酯键结合,在糖、脂、蛋白质代谢中起传递酰基的作用,是酰化酶的辅酶。
6.生物素:是羧化酶的辅基,在体内参与CO2的固定和羧化反应。
7.FH4:由叶酸衍生而来。四氢叶酸是体内一碳单位基团转移酶系统中的辅酶。
8.VitB12衍生物:VitB12分子中含金属元素钴,故又称为钴胺素。VitB12在体内有多种活性形式,如5'-脱氧腺苷钴胺素、甲基钴胺素等。其中,5'-脱氧腺苷钴胺素参与构成变位酶的辅酶,甲基钴胺素则是甲基转移酶的辅酶。
四、金属离子的作用:
1.稳定构象:稳定酶蛋白催化活性所必需的分子构象;
2.构成酶的活性中心:作为酶的活性中心的组成成分,参与构成酶的活性中心;
3.连接作用:作为桥梁,将底物分子与酶蛋白螯合起来。
五、酶的活性中心:
酶分子上具有一定空间构象的部位,该部位化学基团集中,直接参与将底物转变为产物的反应过程,这一部位就称为酶的活性中心。
参与构成酶的活性中心的化学基团,有些是与底物相结合的,称为结合基团,有些是催化底物反应转变成产物的,称为催化基团,这两类基团统称为活性中心内必需基团。在酶的活性中心以外,也存在一些化学基团,主要与维系酶的空间构象有关,称为酶活性中心外必需基团。
六、酶促反应的特点:
1.具有极高的催化效率:酶的催化效率可比一般催化剂高106~1020倍。酶能与底物形成ES中间复合物,从而改变化学反应的进程,使反应所需活化能阈大大降低,活化分子的数目大大增加,从而加速反应进行。
2.具有高度的底物特异性:一种酶只作用于一种或一类化合物,以促进一定的化学变化,生成一定的产物,这种现象称为酶作用的特异性。
⑴绝对特异性:一种酶只能作用于一种化合物,以催化一种化学反应,称为绝对特异性,如琥珀酸脱氢酶。
⑵相对特异性:一种酶只能作用于一类化合物或一种化学键,催化一类化学反应,称为相对特异性,如脂肪酶。
⑶立体异构特异性:一种酶只能作用于一种立体异构体,或只能生成一种立体异构体,称为立体异构特异性,如L-精氨酸酶。
3.酶的催化活性是可以调节的:如代谢物可调节酶的催化活性,对酶分子的共价修饰可改变酶的催化活性,也可通过改变酶蛋白的合成来改变其催化活性。
七、酶促反应的机制:
1.中间复合物学说与诱导契合学说:酶催化时,酶活性中心首先与底物结合生成一种酶-底物复合物(ES),此复合物再分解释放出酶,并生成产物,即为中间复合物学说。当底物与酶接近时,底物分子可以诱导酶活性中心的构象以生改变,使之成为能与底物分子密切结合的构象,这就是诱导契合学说。
2.与酶的高效率催化有关的因素:①趋近效应与定向作用;②张力作用;③酸碱催化作用;④共价催化作用;⑤酶活性中心的低介电区(表面效应)。
八、酶促反应动力学:
酶反应动力学主要研究酶催化的反应速度以及影响反应速度的各种因素。在探讨各种因素对酶促反应速度的影响时,通常测定其初始速度来代表酶促反应速度,即底物转化量<5%时的反应速度。
1.底物浓度对反应速度的影响:
⑴底物对酶促反应的饱和现象:由实验观察到,在酶浓度不变时,不同的底物浓度与反应速度的关系为一矩形双曲线,即当底物浓度较低时,反应速度的增加与底物浓度的增加成正比(一级反应);此后,随底物浓度的增加,反应速度的增加量逐渐减少(混合级反应);最后,当底物浓度增加到一定量时,反应速度达到一最大值,不再随底物浓度的增加而增加(零级反应)。
⑵米氏方程及米氏常数:根据上述实验结果,Michaelis&Menten于1913年推导出了上述矩形双曲线的数学表达式,即米氏方程:ν=Vmax[S]/(Km+[S])。其中,Vmax为最大反应速度,Km为米氏常数。
⑶Km和Vmax的意义:
①当ν=Vmax/2时,Km=[S]。因此,Km等于酶促反应速度达最大值一半时的底物浓度。
②当k-1>>k+2时,Km=k-1/k+1=Ks。因此,Km可以反映酶与底物亲和力的大小,即Km值越小,则酶与底物的亲和力越大;反之,则越小。
③Km可用于判断反应级数:当[S]<0.01Km时,ν=(Vmax/Km)[S],反应为一级反应,即反应速度与底物浓度成正比;当[S]>100Km时,ν=Vmax,反应为零级反应,即反应速度与底物浓度无关;当0.01Km<[S]<100Km时,反应处于零级反应和一级反应之间,为混合级反应。
④Km是酶的特征性常数:在一定条件下,某种酶的Km值是恒定的,因而可以通过测定不同酶(特别是一组同工酶)的Km值,来判断是否为不同的酶。
⑤Km可用来判断酶的最适底物:当酶有几种不同的底物存在时,Km值最小者,为该酶的最适底物。
⑥Km可用来确定酶活性测定时所需的底物浓度:当[S]=10Km时,ν=91%Vmax,为最合适的测定酶活性所需的底物浓度。
⑦Vmax可用于酶的转换数的计算:当酶的总浓度和最大速度已知时,可计算出酶的转换数,即单位时间内每个酶分子催化底物转变为产物的分子数。
⑷Km和Vmax的测定:主要采用Lineweaver-Burk双倒数作图法和Hanes作图法。
2.酶浓度对反应速度的影响:当反应系统中底物的浓度足够大时,酶促反应速度与酶浓度成正比,即ν=k[E]。
3.温度对反应速度的影响:一般来说,酶促反应速度随温度的增高而加快,但当温度增加达到某一点后,由于酶蛋白的热变性作用,反应速度迅速下降。酶促反应速度随温度升高而达到一最大值时的温度就称为酶的最适温度。酶的最适温度与实验条件有关,因而它不是酶的特征性常数。低温时由于活化分子数目减少,反应速度降低,但温度升高后,酶活性又可恢复。
4.pH对反应速度的影响:观察pH对酶促反应速度的影响,通常为一钟形曲线,即pH过高或过低均可导致酶催化活性的下降。酶催化活性最高时溶液的pH值就称为酶的最适pH。人体内大多数酶的最适pH在6.5~8.0之间。酶的最适pH不是酶的特征性常数。
5.抑制剂对反应速度的影响:
凡是能降低酶促反应速度,但不引起酶分子变性失活的物质统称为酶的抑制剂。按照抑制剂的抑制作用,可将其分为不可逆抑制作用和可逆抑制作用两大类。
⑴不可逆抑制作用:
抑制剂与酶分子的必需基团共价结合引起酶活性的抑制,且不能采用透析等简单方法使酶活性恢复的抑制作用就是不可逆抑制作用。如果以ν~[E]作图,就可得到一组斜率相同的平行线,随抑制剂浓度的增加而平行向右移动。酶的不可逆抑制作用包括专一性抑制(如有机磷农药对胆碱酯酶的抑制)和非专一性抑制(如路易斯气对巯基酶的抑制)两种。
⑵可逆抑制作用:
抑制剂以非共价键与酶分子可逆性结合造成酶活性的抑制,且可采用透析等简单方法去除抑制剂而使酶活性完全恢复的抑制作用就是可逆抑制作用。如果以ν~[E]作图,可得到一组随抑制剂浓度增加而斜率降低的直线。可逆抑制作用包括竞争性、反竞争性和非竞争性抑制几种类型。
①竞争性抑制:抑制剂与底物竞争与酶的同一活性中心结合,从而干扰了酶与底物的结合,使酶的催化活性降低,这种作用就称为竞争性抑制作用。其特点为:a.竞争性抑制剂往往是酶的底物类似物或反应产物;b.抑制剂与酶的结合部位与底物与酶的结合部位相同;c.抑制剂浓度越大,则抑制作用越大;但增加底物浓度可使抑制程度减小;d.动力学参数:Km值增大,Vm值不变。典型的例子是丙二酸对琥珀酸脱氢酶(底物为琥珀酸)的竞争性抑制和磺胺类药物(对氨基苯磺酰胺)对二氢叶酸合成酶(底物为对氨基苯甲酸)的竞争性抑制。
②反竞争性抑制:抑制剂不能与游离酶结合,但可与ES复合物结合并阻止产物生成,使酶的催化活性降低,称酶的反竞争性抑制。其特点为:a.抑制剂与底物可同时与酶的不同部位结合;b.必须有底物存在,抑制剂才能对酶产生抑制作用;c.动力学参数:Km减小,Vm降低。
③非竞争性抑制:抑制剂既可以与游离酶结合,也可以与ES复合物结合,使酶的催化活性降低,称为非竞争性抑制。其特点为:a.底物和抑制剂分别独立地与酶的不同部位相结合;b.抑制剂对酶与底物的结合无影响,故底物浓度的改变对抑制程度无影响;c.动力学参数:Km值不变,Vm值降低。
6.激活剂对反应速度的影响:能够促使酶促反应速度加快的物质称为酶的激活剂。酶的激活剂大多数是金属离子,如K+、Mg2+、Mn2+等,唾液淀粉酶的激活剂为Cl-。
九、酶的调节:
可以通过改变其催化活性而使整个代谢反应的速度或方向发生改变的酶就称为限速酶或关键酶。
酶活性的调节可以通过改变其结构而使其催化活性以生改变,也可以通过改变其含量来改变其催化活性,还可以通过以不同形式的酶在不同组织中的分布差异来调节代谢活动。
1.酶结构的调节:通过对现有酶分子结构的影响来改变酶的催化活性。这是一种快速调节方式。
⑴变构调节:又称别构调节。某些代谢物能与变构酶分子上的变构部位特异性结合,使酶的分子构发生改变,从而改变酶的催化活性以及代谢反应的速度,这种调节作用就称为变构调节。具有变构调节作用的酶就称为变构酶。凡能使酶分子变构并使酶的催化活性发生改变的代谢物就称为变构剂。当变构酶的一个亚基与其配体(底物或变构剂)结合后,能够通过改变相邻亚基的构象而使其对配体的亲和力发生改变,这种效应就称为变构酶的协同效应。变构剂一般以反馈方式对代谢途径的起始关键酶进行调节,常见的为负反馈调节。变构调节的特点:①酶活性的改变通过酶分子构象的改变而实现;②酶的变构仅涉及非共价键的变化;③调节酶活性的因素为代谢物;④为一非耗能过程;⑤无放大效应。
⑵共价修饰调节:酶蛋白分子中的某些基团可以在其他酶的催化下发生共价修饰,从而导致酶活性的改变,称为共价修饰调节。共价修饰方式有:磷酸化-脱磷酸化等。共价修饰调节一般与激素的调节相联系,其调节方式为级联反应。共价修饰调节的特点为:①酶以两种不同修饰和不同活性的形式存在;②有共价键的变化;③受其他调节因素(如激素)的影响;④一般为耗能过程;⑤存在放大效应。
⑶酶原的激活:处于无活性状态的酶的前身物质就称为酶原。酶原在一定条件下转化为有活性的酶的过程称为酶原的激活。酶原的激活过程通常伴有酶蛋白一级结构的改变。酶原分子一级结构的改变导致了酶原分子空间结构的改变,使催化活性中心得以形成,故使其从无活性的酶原形式转变为有活性的酶。酶原激活的生理意义在于:保护自身组织细胞不被酶水解消化。
2.酶含量的调节:是指通过改变细胞中酶蛋白合成或降解的速度来调节酶分子的绝对含量,影响其催化活性,从而调节代谢反应的速度。这是机体内迟缓调节的重要方式。
⑴酶蛋白合成的调节:酶蛋白的合成速度通常通过一些诱导剂或阻遏剂来进行调节。凡能促使基因转录增强,从而使酶蛋白合成增加的物质就称为诱导剂;反之,则称为阻遏剂。常见的诱导剂或阻遏剂包括代谢物、药物和激素等。
⑵酶蛋白降解的调节:如饥饿时,精氨酸酶降解减慢,故酶活性增高,有利于氨基酸的分解供能。
3.同工酶的调节:在同一种属中,催化活性相同而酶蛋白的分子结构,理化性质及免疫学性质不同的一组酶称为同工酶。同工酶在体内的生理意义主要在于适应不同组织或不同细胞器在代谢上的不同需要。因此,同工酶在体内的生理功能是不同的。
乳酸脱氢酶同工酶(LDHs)为四聚体,在体内共有五种分子形式,即LDH1(H4),LDH2(H3M1),LDH3(H2M2),LDH4(H1M3)和LDH5(M4)。心肌中以LDH1含量最多,LDH1对乳酸的亲和力较高,因此它的主要作用是催化乳酸转变为丙酮酸再进一步氧化分解,以供应心肌的能量。在骨骼肌中含量最多的是LDH5,LDH5对丙酮酸的亲和力较高,因此它的主要作用是催化丙酮酸转变为乳酸,以促进糖酵解的进行。
十、酶的命名与分类:
1.酶的命名:主要有习惯命名法与系统命名法两种,但常用者为习惯命名法。
2.酶的分类:根据1961年国际酶学委员会(IEC)的分类法,将酶分为六大类:①氧化还原酶类:催化氧化还原反应;②转移酶类:催化一个基团从某种化合物至另一种化合物;③水解酶类:催化化合物的水解反应;④裂合酶类:催化从双键上去掉一个基团或加上一个基团至双键上;⑤异构酶类:催化分子内基团重排;⑥合成酶类:催化两分子化合物的缔合反应。——————————
第五章糖代谢
一、糖类的生理功用:
①氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。
②作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。
③作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。
④转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。
二、糖的无氧酵解:
糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。
糖的无氧酵解代谢过程可分为四个阶段:
1.活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。
2.裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸二羟丙酮+3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。
3.放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。此阶段有两次底物水平磷酸化的放能反应,共可生成2×2=4分子ATP。丙酮酸激酶为关键酶。
4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。即丙酮酸→乳酸。
三、糖无氧酵解的调节:
主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。己糖激酶的变构抑制剂是G-6-P;肝中的葡萄糖激酶是调节肝细胞对葡萄糖吸收的主要因素,受长链脂酰CoA的反馈抑制;6-磷酸果糖激酶-1是调节糖酵解代谢途径流量的主要因素,受ATP和柠檬酸的变构抑制,AMP、ADP、1,6-双磷酸果糖和2,6-双磷酸果糖的变构激活;丙酮酸激酶受1,6-双磷酸果糖的变构激活,受ATP的变构抑制,肝中还受到丙氨酸的变构抑制。
四、糖无氧酵解的生理意义:
1.在无氧和缺氧条件下,作为糖分解供能的补充途径:⑴骨骼肌在剧烈运动时的相对缺氧;⑵从平原进入高原初期;⑶严重贫血、大量失血、呼吸障碍、肺及心血管疾患所致缺氧。
2.在有氧条件下,作为某些组织细胞主要的供能途径:如表皮细胞,红细胞及视网膜等,由于无线粒体,故只能通过无氧酵解供能。
五、糖的有氧氧化:
葡萄糖在有氧条件下彻底氧化分解生成C2O和H2O,并释放出大量能量的过程称为糖的有氧氧化。绝大多数组织细胞通过糖的有氧氧化途径获得能量。此代谢过程在细胞胞液和线粒体内进行,一分子葡萄糖彻底氧化分解可产生36/38分子ATP。糖的有氧氧化代谢途径可分为三个阶段:
1.葡萄糖经酵解途径生成丙酮酸:
此阶段在细胞胞液中进行,与糖的无氧酵解途径相同,涉及的关键酶也相同。一分子葡萄糖分解后生成两分子丙酮酸,两分子(NADH+H+)并净生成2分子ATP。NADH在有氧条件下可进入线粒体产能,共可得到2×2或2×3分子ATP。故第一阶段可净生成6/8分子ATP。
2.丙酮酸氧化脱羧生成乙酰CoA:
丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化下氧化脱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 注册商标特许经营合同模板
- 租房养牛合同范例
- 环卫人工劳务合同范例
- 工程代加工合同范例
- 读书活动实施方案(2篇)
- 2024无偿保管合同书范文
- 义务教育阶段学校减负百日行活动实施方案(三篇)
- 物品过户合同范例
- 硬件合同框架合同范例
- 二零二四年度茶馆装修设计与施工合同
- 教师资格证必背时政类教育热点
- 政府采购基础知识培训(最终稿)
- 华为能你也能:IPD产品管理实践
- 西安银行2023年校园招聘笔试历年难、易错考点试题含答案附详解
- 护理题库-基层卫生岗位练兵和技能竞赛试题
- 期中考试总结表彰大会方案
- 六年级下册数学教学设计-《绘制校园平面图》北师大版
- 杜甫(介绍杜甫生平、经历影响)-课件
- 2021年髋关节置换术后床下活动指引
- 丹佛斯变频器fc102设计指南工控网
- 泰斯标准曲线w(u)
评论
0/150
提交评论