版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海四平中学2022-2023学年高二数学理知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.命题“若,则”的否命题是(A)若,则 (B)若,则 (C)若,则
(D)若,则参考答案:A2.
参考答案:A略3.向量=(1,﹣2),=(2,1),则()A.∥
B.⊥C.与的夹角为60°D.与的夹角为30°参考答案:B【考点】平面向量的坐标运算;数量积表示两个向量的夹角.【分析】运用数量积的坐标表示,求出两向量的数量积,再由夹角公式,判断两向量的位置关系.【解答】解:∵向量=(1,﹣2),=(2,1),∴=1×2+(﹣2)×1=0,∴夹角的余弦为0,∴⊥.故选B.4.已知数列的前项和为,且,,可归纳猜想出的表达式为(
)A. B. C. D.参考答案:A略5.如图所示的流程图中,输出d的含义是(
)A.点到直线的距离B.点到直线的距离的平方C.点到直线距离的倒数D.两条平行线间的距离参考答案:A【分析】将代入中,结合点到直线的距离公式可得.【详解】因为,,所以,故d的含义是表示点到直线的距离.故选A.【点睛】本题考查了程序框图以及点到直线的距离公式,属基础题.6.已知既有极大值又有极小值,则的取值范围为(
)A.
B.
C.
D.参考答案:D7.若向量,且与共线,则实数的值为(
)A.0
B.1
C.2
D.参考答案:D8.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第个图案中有白色地面砖的块数是(***)
A、
B、
C、
D、
参考答案:A略9.已知y关于的线性回归方程为,且变量x,y之间的一组相关数据如下表所示,则下列说法错误的是(
)x0123y0.8m3.14.3A变量x,y之间呈正相关关系B可以预测当时,C.由表中数据可知,该回归直线必过点(1.5,2.5)D.参考答案:D【分析】根据线性回归方程的定义以及相关的结论,逐项判断,可得结果.【详解】选项A,因为线性回归方程为,其中,所以变量,之间呈正相关关系,正确;选项B,当时,,正确;选项C,根据表格数据可得,,,因为回归直线必过点,所以,正确;选项D,,解得,错误.故选D.【点睛】本题主要考查线性相关与线性回归方程的应用.10.用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根参考答案:A【考点】R9:反证法与放缩法.【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是:方程x3+ax+b=0没有实根.故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.变量,满足条件,则的最大值为_______________.参考答案:12.某校高一高二田径队有运动员98人,其中高一有56人.按用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取高二运动员人数是
.参考答案:1213.若抛物线的焦点坐标为,则抛物线的标准方程是________________
参考答案:14.已知空间中动平面与半径为5的定球相交所得的截面的面积为与,其截面圆心分别为,则线段的长度最大值为
.参考答案:略15.幂函数f(x)=xα(α∈R)过点,则f(4)=
.参考答案:2
略16.过点平行的直线的方程是
.参考答案:略17.有一隧道,内设双行线公路,同方向有两个车道(共有四个车道),每个车道宽为3m,此隧道的截面由一个长方形和一抛物线构成,如图所示。为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少为,靠近中轴线的车道为快车道,两侧的车道为慢车道,则车辆通过隧道时,慢车道的限制高度为
.(精确到)
参考答案:4.3三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数(x∈是g(x)的一个单调区间,且在该区间上g(x)>0恒成立,求实数m的取值范围.参考答案:【考点】函数恒成立问题;函数单调性的判断与证明.【专题】综合题.【分析】(Ⅰ)设1≤x1<x2<+∞,=(x1﹣x2)(),由1≤x1<x2<+∞,m<1,能够证明函数f(x)在,由此进行分类讨论,能够求出实数m的取值范围.【解答】(Ⅰ)证明:设1≤x1<x2<+∞,=(x1﹣x2)()∵1≤x1<x2<+∞,m<1,∴x1﹣x2<0,>0,∴f(x1)<f(x2)∴函数f(x)在①g(x)在上单调递增,且g(x)>0,②g(x)在上单调递减,且g(x)>0,无解综上所述【点评】本题考查函数的恒成立问题的性质和应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.解题时要认真审题,仔细解答.19.设函数定义在上,,导函数(Ⅰ)求的单调区间和最小值;(Ⅱ)求在上的最大值。参考答案:由条件
3分
4分
6分令
得到增区间为(
8分令
得到减区间为(
10分=-
12分当时,的最大值为
当时,的最大值为=a-1当时,的最大值为=
16分略20.(本小题满分16分)已知函数=x3-2x2+3x(x∈R)的图象为曲线C.(1)求过曲线C上任意一点的切线倾斜角的取值范围;(2)求在区间[-1,4]上的最值;(3)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围.参考答案:解:(1)由题意得f′(x)=x2-4x+3,则f′(x)=(x-2)2-1≥-1,…………2分即过曲线C上任意一点切线倾斜角的取值范围是
…………4分(2)的最大值为;的最小值为
…………9分(3)设曲线C的其中一条切线的斜率为k,则由(2)中条件并结合(1)中结论可知,…………12分解得-1≤k<0或k≥1,故由-1≤x2-4x+3<0或x2-4x+3≥1,得x∈(-∞,2-]∪(1,3)∪[2+,+∞).
…………16分21.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.参考答案:【考点】R5:绝对值不等式的解法.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=222.袋中有标号为1、2、3、4、5的5个球,从中随机取出两个球.(1)写出所有的基本事件;(2)求所取出的两个球的标号之和大于5的概率.参考答案:【考点】古典概型及其概率计算公式.【分析】利用列举法求解.【解答】解:(1)袋中有标号为1、2、3、4、5的5个球,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防设施招投标合同
- 大型场馆建设合同样式
- 食品加工三方施工合同
- 机场VIP室花卉租用协议
- 剧院清洁工招聘协议书
- 儿童玩具专卖店装修施工合同
- 游艇码头建造师合同模板
- 豪华邮轮厨师长聘用合同
- 地铁站雨污治理工程协议
- 服装店财务人员劳动合同
- NUDD新独难异失效模式预防检查表
- NUDD_Definition新项目风险评估 - 审查跟踪记录
- 关于进一步规范保健食品原料管理规定
- 搓、滚丝螺纹前的毛坯直径
- 多媒体技术多媒体技术
- Y3150齿轮机床电气控制技术课程设计
- 人教版小学数学六年级上册第一单元测验双向细目表
- 部编本小学五年级上册语文期末考试(选择题)专项训练题及答案
- 读《让儿童在问题中学数学》有感范文三篇
- 陈述句改成双重否定句(课堂PPT)
- 人教版六年级数学上册总复习教案
评论
0/150
提交评论