版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市向东中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,若a=7,b=8,cosC=,则最大角的余弦值是()A. B. C. D.参考答案:C【考点】余弦定理;正弦定理.【专题】计算题;解三角形.【分析】利用余弦定理c2=a2+b2﹣2abcosC的式子,结合题意算出c=3,从而得到b为最大边,算出cosB的值即可得到最大角的余弦之值.【解答】解:∵在△ABC中,,∴c2=a2+b2﹣2abcosC=49+64﹣2×7×8×=9,得c=3∵b>a>c,∴最大边为b,可得B为最大角因此,cosB==,即最大角的余弦值为故选:C【点评】本题给出三角形的两边和夹角,求最大角的余弦.着重考查了三角形中大边对大角、利用余弦定理解三角形的知识,属于基础题.2.当直线与曲线有3个公共点时,实数k的取值范围是(
)A. B. C. D.参考答案:A【分析】当时,曲线;当时,曲线;当时,曲线,根据数形结合可得实数k的取值范围.【详解】当时,曲线;当时,曲线;当时,曲线.如图所示:直线与曲线有3个公共点时,实数k的取值范围是,所以本题答案为A.【点睛】本题主要考查函数图像的绘制,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力,解题的关键是要准确作出含有绝对值函数的图像.3.设全集,,则右图中阴影部分表示的集合为(▲) A.
B.
C.
D.参考答案:B略4.已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n?α,则m⊥nC.若m⊥α,m⊥n,则n∥α D.若m∥α,m⊥n,则n⊥α参考答案:B【考点】空间中直线与直线之间的位置关系.【专题】空间位置关系与距离.【分析】A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【解答】解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n?α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n?α,故C错;D.若m∥α,m⊥n,则n∥α或n?α或n⊥α,故D错.故选B.【点评】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.5.按流程图的程序计算,若开始输入的值为,则输出的的值是
(
)A.
B.
C.
D.参考答案:D略6.复数的模为()A. B. C. D.参考答案:B7.设函数f(x)=,则不等式f(x)>f(1)的解集是(
A.(-3,1)∪(2,+∞) B.(-3,1)∪(3,+∞) C.(-1,1)∪(3,+∞)
D.(-∞,-3)∪(1,3)参考答案:B略8.已知抛物线的焦点为F,准线为.若与双曲线的两条渐近线分别交于点A和点B,且(O为原点),则双曲线的离心率为A. B. C.2 D.参考答案:D【分析】只需把用表示出来,即可根据双曲线离心率的定义求得离心率。【详解】抛物线的准线的方程为,双曲线的渐近线方程为,则有∴,,,∴。故选D。【点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB的长度。9.设向量,,若⊥,则(
)A.
B.
C.
D.参考答案:D略10.设抛物线y2=6x的焦点为F,准线为l,P为抛物线上一点,PA丄l,垂足为A,如果△APF为正三角形,那么|PF|等于()A.4 B.6 C.6 D.12参考答案:C【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】先根据抛物线方程求出焦点坐标和准线方程,根据直线AF的斜率得到AF方程,与准线方程联立,解出A点坐标,因为PA丄l,所以P点与A点纵坐标相同,再代入抛物线方程求P点横坐标,利用抛物线的定义就可求出|PF|长.【解答】解:∵抛物线方程为y2=6x,∴焦点F(1.5,0),准线l方程为x=﹣1.5,∵△APF为正三角形,∴直线AF的斜率为﹣,∴直线AF的方程为y=﹣(x﹣1.5),与x=﹣1.5联立,可得A点坐标为(﹣1.5,3)∵PA⊥l,A为垂足,∴P点纵坐标为3,代入抛物线方程,得P点坐标为(4.5,3),∴|PF|=|PA|=4.5﹣(﹣1.5)=6故选:C.【点评】本题主要考查抛物线的几何性质,定义的应用,以及曲线交点的求法,属于综合题.二、填空题:本大题共7小题,每小题4分,共28分11.与双曲线有相同的渐近线,且过点的双曲线的标准方程是
.参考答案:12.已知复数(i是虚数单位),则的值为__________.参考答案:5试题分析:.考点:复数的运算,复数的模.13.函数f(x)的定义域为R,周期为4,若f(x﹣1)为奇函数,且f(1)=1,则f(7)+f(9)=
.参考答案:1【考点】3L:函数奇偶性的性质;3Q:函数的周期性.【分析】由已知中f(x﹣1)为奇函数,可得f(﹣1)=0,结合函数f(x)的定义域为R,周期为4,且f(1)=1,则f(7)+f(9)=f(﹣1)+f(1),进而得到答案.【解答】解:由f(x﹣1)为奇函数,知f(﹣1)=0,又∵函数f(x)的定义域为R,周期为4,f(1)=1,∴f(7)+f(9)=f(﹣1)+f(1)=1,故答案为:114.“”是“”的___________条件.(用“充要”“充分不必要”“必要不充分”“既不充分也不必要”填空)参考答案:15.如图,圆O上一点在直径上的射影为.,,则____,___.参考答案:,略16.直线被圆截得的弦长等于
▲
参考答案:17.直线被圆C:截得的弦长是
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线x-y+2=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M、N,当|AM|=|AN|时,求m的取值范围.参考答案:(2)设P为弦MN的中点.由得(3k2+1)x2+6kmx+3(m2-1)=0.(6分)由Δ>0,得m2<3k2+1
①,(8分)∴xP=,从而,yP=kxp+m=.∴kAP=.由MN⊥AP,得=-,即2m=3k2+1
②.(10分)将②代入①,得2m>m2,解得0<m<2.由②得k2=>0.解得m>.故所求m的取值范围为(,2).(12分)19.(12分)在复平面上,设点A、B、C,对应的复数分别为。过A、B、C做平行四边形ABCD。求点D的坐标及此平行四边形的对角线BD的长。参考答案:解:由题知平行四边形三顶点坐标为,
设D点的坐标为
。
4分因为,得,得得,即
6分所以
,则。
2分略20.已知圆E:(x+1)2+y2=16,点F(1,0),P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q(1)求动点Q的轨迹Γ的方程;(2)若直线y=k(x﹣1)与(1)中的轨迹Γ交于R,S两点,问是否在x轴上存在一点T,使得当k变动时,总有∠OTS=∠OTR?说明理由.参考答案:【考点】椭圆的简单性质.【分析】(1)连结QF,运用垂直平分线定理可得,|QP|=|QF|,可得|QE|+|QF|=|QE|+|QP|=4>|EF|=2,由椭圆的定义即可得到所求轨迹方程;(2)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2),联立直线方程和椭圆方程,运用韦达定理和判别式大于0,由直线的斜率之和为0,化简整理,即可得到存在T(4,0).【解答】解:(1)连结QF,根据题意,|QP|=|QF|,则|QE|+|QF|=|QE|+|QP|=4>|EF|=2,故动点Q的轨迹Γ是以E,F为焦点,长轴长为4的椭圆.设其方程为,可知a=2,c=1,∴,所以点Q的轨迹Γ的方程为;
(2)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2)联立,得(3+4k2)x2﹣8k2x+4k2﹣12=0,由韦达定理有①,其中△>0恒成立,由∠OTS=∠OTR(显然TS,TR的斜率存在),故kTS+kTR=0即②,由R,S两点在直线y=k(x﹣1)上,故y1=k(x1﹣1),y2=k(x2﹣1)代入②得,即有2x1x2﹣(t+1)(x1+x2)+2t=0③,将①代入③,即有:④,要使得④与k的取值无关,当且仅当“t=4“时成立,综上所述存在T(4,0),使得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度城市景观美化宣传品制作合同3篇
- 应急指挥系统的建设与优化
- 电气行业安全管理工作总结
- 二零二五年度花卉进出口贸易合同协议3篇
- 二零二五年度个人二手房买卖风险评估合同2篇
- 二零二五年度个人医疗费用收据模板定制合同3篇
- 二零二五版电力行业员工试用及转正劳动合同范本3篇
- 2025版科研设备续租合同申请模板3篇
- 仓库信息化流程
- 建筑行业工程师的工作总结
- 事业单位公开招聘工作人员考试题(公共基础知识试题和答案)
- 2024年智能科技项目开发战略合作框架协议
- 精神科健康宣教手册-各种精神疾病宣教
- 甲状腺的科普宣教
- 2024版新能源汽车充电桩建设与运营合作框架协议3篇
- 挂靠免责协议书范本
- 四年级全一册《劳动与技术》第四单元 活动4《饲养动物的学问》课件
- 2024年考研英语(一)真题及参考答案
- 定制柜子保修合同协议书
- 2023年全国自学考试00054管理学原理试题答案
- GB/T 712-2011船舶及海洋工程用结构钢
评论
0/150
提交评论