四川省泸州市棉花坡镇初级中学2022年高二数学理月考试题含解析_第1页
四川省泸州市棉花坡镇初级中学2022年高二数学理月考试题含解析_第2页
四川省泸州市棉花坡镇初级中学2022年高二数学理月考试题含解析_第3页
四川省泸州市棉花坡镇初级中学2022年高二数学理月考试题含解析_第4页
四川省泸州市棉花坡镇初级中学2022年高二数学理月考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省泸州市棉花坡镇初级中学2022年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知正三角形ABC的边长为2,D是BC边的中点,将三角形ABC沿AD翻折,使,若三棱锥A﹣BCD的四个顶点都在球O的球面上,则球O的表面积为()A.7π B.19π C. D.参考答案:A【考点】球的体积和表面积.【分析】通过底面三角形BCD求出底面圆的半径DM,判断球心到底面圆的距离OD,求出球O的半径,即可求解球O的表面积.【解答】解:△BCD中,BD=1,CD=1,BC=,所以∠BDC=120°,底面三角形的底面圆半径为:DM=CM=1,AD是球的弦,DA=,∴OM=,∴球的半径OD=.该球的表面积为:4π×OD2=7π;故选:A2.点在所在平面内,给出下列关系式:(1);(2);(3);(4).则点依次为的

)A.内心、外心、重心、垂心

B.重心、外心、内心、垂心C.重心、垂心、内心、外心

D.外心、内心、垂心、重心参考答案:C3.设x,y满足约束条件,则z=3x+y的最大值为()A.5 B.3 C.7 D.﹣8参考答案:C【考点】简单线性规划.【分析】首先作出可行域,再作出直线l0:y=﹣3x,将l0平移与可行域有公共点,直线y=﹣3x+z在y轴上的截距最大时,z有最大值,求出此时直线y=﹣3x+z经过的可行域内的点A的坐标,代入z=3x+y中即可.【解答】解:如图,作出可行域,作出直线l0:y=﹣3x,将l0平移至过点A(3,﹣2)处时,函数z=3x+y有最大值7.故选C.4.在区间[0,1]上任意取两个实数x,y,则的概率为(

)A. B. C. D.参考答案:A【分析】作出点所在的平面区域是正方形,满足的点在线段左上方的阴影部分,利用几何概型概率公式计算即可得解。【详解】由题可得:作出点所表示的平面区域如下图的正方形,又满足的点在线段左上方的阴影部分,所以的概率为.故选:A【点睛】本题主要考查了转化能力及数形结合思想,还考查了几何概型概率计算公式,属于中档题。5.已知,则下列三个数(

)A.都大于6

B.至少有一个不大于6

C.都小于6

D.至少有一个不小于6参考答案:D假设3个数,,都小于6,则利用基本不等式可得,,这与假设矛盾,故假设不成立,即3个数,,至少有一个不小于6,故选D.

6.等比数列中,,则数列的公比为

A. B. C. D.参考答案:D略7.已知中心在坐标原点的双曲线C与抛物线有相同的焦点F,点A是两曲线的交点,且AF轴,则双曲线的离心率为 ()A. B. C. D.参考答案:B8.在△ABC中,a,b,c分别是角A,B,C所对的边.若A=,b=1,△ABC的面积为,则a的值为()A.1 B.2 C. D.参考答案:D【考点】正弦定理;余弦定理.【分析】先利用三角形面积公式求得c,最后利用余弦定理求得a.【解答】解:由已知得:bcsinA=×1×c×sin60°=?c=2,则由余弦定理可得:a2=4+1﹣2×2×1×cos60°=3?a=故选D【点评】本题主要考查了余弦定理的应用和三角形面积公式的应用.解题的关键是通过余弦定理完成了边角问题的互化.9.如图,正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形.其中正确的说法是(

)(1)动点A′在平面ABC上的射影在线段AF上 (2)恒有平面A′GF⊥平面BCED(3)三棱锥A′—FED的体积有最大值 (4)异面直线A′E与BD不可能垂直A.(1)(2)(3)

B.(1)(2)(4)

C.(2)(3)(4)

D.(1)(3)(4)参考答案:A10.若随机变量,且,则的值是()A.

B.

C.

D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.设.若曲线与直线所围成封闭图形的面积为,则____.参考答案:略12.抛物线的焦点到准线的距离是

.参考答案:213.已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为____________.(改编题)参考答案:14.的展开式中各项系数的和为﹣32,则该展开式中系数最大的项为.参考答案:【考点】二项式定理的应用.【分析】根据展开式中各项系数和为3﹣2求得a=3,再利用通项公式求得展开式中系数最大的项.【解答】解:在的展开式中,令x=1,可得各项系数和为(1﹣a)5=﹣32,∴a=3,展开式的通项为,取值可得r=4时该展开式中系数最大的项为,故答案为.15.用“秦九韶算法”计算多项式,当x=2时的值的过程中,要经过

次乘法运算和

次加法运算。参考答案:5,516.已知集合A={x∈R|3x+2>0﹜,B={x∈R|(x+1)(x﹣3)>0﹜则A∩B=(3,+∞).参考答案:(3,+∞)略17.命题p:若,则是▲命题;命题p的逆命题是▲命题.(在横线上填“真”或“假”)参考答案:真;假三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中,角A,B,C的对边分别为a,b,c,且,若.(1)求角B的大小;(2)若,且△ABC的面积为,求sinA的值.参考答案:(1);(2).【分析】(1)由正弦定理,同角三角函数基本关系式化简已知,结合sinA≠0,sinB≠0,可求cosB,结合范围0<B<π,可得B的值;(2)由已知利用三角形的面积公式可求ac的值,由余弦定理得a+c=4,联立解得a,c的值,由正弦定理即可解得sinA的值.【详解】(1)在?ABC中,sin(B+C)=sinA,

由正弦定理和已知条件得:sinA?tanB=2sinB?sinA,由于sinA?0,sinB?0,则有:cosB=,又0<B<?,所以B=(2)由题可知:S?ABC=acsinB=ac?sin=,?ac=3,在?ABC中由余弦定理得:b2=a2+c2-2ac?cos,即有:7=a2+c2-ac,整理得:(a+c)2-3ac=7,代入得:(a+c)2=16,?a+c=4,解方程组,又a>c,得:a=3,c=1,由正弦定理得:,?sinA=.【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.某产品原来的成本为1000元/件,售价为1200元/件,年销售量为1万件.由于市场饱和顾客要求提高,公司计划投入资金进行产品升级.据市场调查,若投入x万元,每件产品的成本将降低元,在售价不变的情况下,年销售量将减少万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润记为f(x)(单位:万元).(1)求f(x)的函数解析式;(2)求f(x)的最大值,以及f(x)取得最大值时x的值.参考答案:【考点】函数模型的选择与应用.【专题】应用题;函数的性质及应用.【分析】(1)求出产品升级后每件的成本、利润及年销售量,则利润的函数表达式可求;(2)利用基本不等式求出f(x)的最大值.【解答】解:(1)依题意,产品升级后,每件的成本为元,利润为元,年销售量为万件,纯利润为,=(万元);(2),=178.5.等号当且仅当,即x=40(万元).即最大值时的x的值为40【点评】本题考查了函数模型的选择及应用,训练了简单的建模思想方法,考查了利用基本不等式求最值,是中档题.20.已知命题p:函数的图象与x轴至多有一个交点,命题.(1)若q为真命题,求实数m的取值范围;(2)若pq为假命题,求实数m的取值范围.参考答案:(1)或.

(2)或.【分析】(1)先解对数不等式得m的取值范围,再求补集得q为真命题时实数m的取值范围,(2)先求为真时实数m的取值范围,再求补集得命题是假命题时实数m的取值范围,最后求交集得结果.【详解】(1)解:由,得,

所以,解得,又因为真命题,所以或.

(2)由函数图像与轴至多一个交点,所以,解得,

所以当是假命题时,或,

由(1)为真命题,即是假命题,所以或,又为假命题,所以命题都是假命题,

所以实数满足,解得或.【点睛】求为真时参数取值范围,往往先求p为真时参数取值范围,再求补集得结果.21.吉安市农业银行的一个办理储蓄的窗口,有一些储户办理业务,假设每位储户办理业务的所需时间相互独立,且该窗口办理业务不间断,对以往该窗口储户办理业务的所需时间统计结果如下:办理业务所需时间(分)12345频率0.20.30.30.10.1从第一个储户办理业务时计时,(1)求到第3分钟结束时办理了业务的储户都办完业务的概率;(2)第三个储户办理业务恰好等待4分钟开始办理业务的概率.参考答案:解:(1)记该事件为事件A,事件A包括①第一个储户办理业务所需时间为3分钟,②第一个储户办理业务所需时间为1分钟且第二个储户办理业务所需的时间为2分钟;③第一个储户办理业务所需时间为2分钟且第二个储户办理业务所需的时间为1分钟;④连续3个储户业务均用了1分钟,所以P(A)=0.3+2×0.2×0.3+0.23=0.428.(2)记第三个储户办理业务恰好等待4分钟开始办理业务为事件B,第三个储户业务办理等待4分钟开始办理包括①第一个储户办理业务用了2分钟,且第二个储户办理业务用了2分钟②第一个储户办理业务用了1分钟,且第二个储户办理业务用了3分钟,③第一个储户办理业务用了3分钟,且第二个储户办理业务用了1分钟,则P(B)=0.3×0.3+2×0.2×0.3=0.21.略22.如图所示,F1,F2分别为椭圆的左、右焦点,椭圆上点M的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的,求椭圆的离心率.参考答案:【考点】椭圆的简单性质.【分析】设椭圆的长半轴、短半轴、半焦距长分别为a、b、c,可得M(c,b),利用勾股定理与椭圆的定义建立关于a、b、c的等式,化简整理得b=,从而得出c==a,即可算出该椭圆的离心率.【解答】解:设椭圆的长半轴、短半轴、半焦距长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论