版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省烟台市师范学院附属中学高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.等比数列an中,a1=2,q=2,Sn=126,则n=()A.9 B.8 C.7 D.6参考答案:D【考点】等比数列的性质.【分析】由首项和公比的值,根据等比数列的前n项和公式表示出Sn,让其等于126列出关于n的方程,求出方程的解即可得到n的值.【解答】解:由a1=2,q=2,得到Sn===126,化简得:2n=64,解得:n=6.故选D【点评】此题考查学生灵活运用等比数列的前n项和公式化简求值,是一道基础题.2.已知a=,b=log2,c=,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a参考答案: C【考点】对数值大小的比较.【分析】判断a、b、c与1,0的大小,即可得到结果.【解答】解:a=∈(0,1),b=log2<0,c=log>1.∴c>a>b.故选:C.3.设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足=4:3:2,则曲线r的离心率等于 A.
B.或2
C.2
D.参考答案:A略4.某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种.A.8 B.15 C.18 D.30参考答案:A【分析】本题是一个分类计数问题,解决问题分成两个种类,根据分类计数原理知共有3+5=8种结果.【详解】由题意知本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类计数原理知共有3+5=8种结果,故选:A.【点睛】本题考查分类计数问题,本题解题的关键是看清楚完成这个过程包含两种方法,看出每一种方法所包含的基本事件数,相加得到结果.5.有200人参加了一次会议,为了了解这200人参加会议的体会,将这200人随机号为001,002,003,…,200,用系统抽样的方法(等距离)抽出20人,若编号为006,036,041,176,196的5个人中有1个没有抽到,则这个编号是(
)A.006 B.041 C.176 D.196参考答案:B【分析】求得抽样的间隔为10,得出若在第1组中抽取的数字为6,则抽取的号码满足,即可出判定,得到答案.【详解】由题意,从200人中用系统抽样的方法抽取20人,所以抽样的间隔为,若在第1组中抽取的数字为006,则抽取的号码满足,其中,其中当时,抽取的号码为36;当时,抽取的号码为176;当时,抽取的号码为196,所以041这个编号不在抽取的号码中,故选B.【点睛】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的抽取方法是解答的关键,着重考查了运算与求解能力,属于基础题.6.下表是某厂1—4月份用水量(单位:百吨)的一组数据:月份x1234用水量y4.5432.5由散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程式=-0.7x+a,则a等于()
A.10.5
B.5.15
C.5.2
D.5.25参考答案:D7.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是()A.异面
B.平行
C.相交
D.不确定参考答案:B略8.“”是“”的(
)A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:D取,则,但,故;取,则,但是,故,故“”是“”的既不充分也不必要条件,选D.9.设x、y、z>0,,,,则a、b、c三数(
)A.都小于2 B.至少有一个不大于2C.都大于2 D.至少有一个不小于2参考答案:D【分析】利用基本不等式计算出,于此可得出结论.【详解】由基本不等式得,当且仅当时,等号成立,因此,若a、b、c三数都小于2,则与矛盾,即a、b、c三数至少有一个不小于2,故选D.【点睛】本题考查了基本不等式的应用,考查反证法的基本概念,解题的关键就是利用基本不等式求最值,考查分析问题和解决问题的能力,属于中等题.10.已知数列,则是这个数列的(
)A.第6项 B.第7项 C.第19项 D.第11项参考答案:B解:数列即:,据此可得数列的通项公式为:,由解得:,即是这个数列的第项.本题选择B选项.二、填空题:本大题共7小题,每小题4分,共28分11.(文)函数f(x)=ax3-x在R上为减函数,则实数a的取值范围是__________.参考答案:a≤0
略12..函数的最小值为________.参考答案:4略13.函数f(x)=x﹣3lnx的单调减区间为.参考答案:(0,3)【考点】利用导数研究函数的单调性.【分析】先求函数f(x)的导数,然后令导函数小于0求x的范围即可.【解答】解:∵f(x)=x﹣3lnx,x>0,∴f'(x)=1﹣=,令<0,则0<x<3,故答案为:(0,3).【点评】本题主要考查函数的单调性与其导函数的正负情况之间的关系.属基础题.14.用数学归纳法证明:,当时,左边为__________.参考答案:等式的左边是以1为首项,为公比的等比数列的前项的和,观察当时,等式左边等于,故答案为.15.袋中有个球,其中有彩色球个.甲、乙、丙三人按甲、乙、丙、甲、乙、丙、的顺序依次从袋中取球,每次取后都放回,规定先取出彩色球者为获胜.则甲、乙、丙获胜的概率比为
.(以整数比作答)参考答案:9:6:416.已知x与y之间的一组数据:x0123y1357则y与x的线性回归方程=bx+a必过点.参考答案:(1.5,4)【考点】线性回归方程.【分析】要求y与x的线性回归方程为y=bx+a必过的点,需要先求出这组数据的样本中心点,根据所给的表格中的数据,求出横标和纵标的平均值,得到样本中心点,得到结果.【解答】解:∵,=4,∴本组数据的样本中心点是(1.5,4),∴y与x的线性回归方程为y=bx+a必过点(1.5,4)故答案为:(1.5,4)17.若y=alnx+bx2+x在x=1和x=2处有极值,则a=
,b=
.参考答案:﹣,﹣【考点】利用导数研究函数的极值.【分析】函数的极值点处的导数值为0,列出方程,求出a,b的值.【解答】解:f′(x)=+2bx+1,由已知得:?,∴a=﹣,b=﹣,故答案为:﹣,﹣.【点评】本题考查了导数的应用,考查函数极值的意义,是一道基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)
袋中有1个白球和4个黑球,每次从中任取1个球,每次取出的黑球不再放回,直到取出白球为止,求取球次数X的分布列.参考答案:解:X的可能取值为1,2,3,4,5,则第1次取到白球的概率为P(X=1)=,第2次取到白球的概率为P(X=2)=×=,第3次取到白球的概率为P(X=3)=××=,第4次取到白球的概率为P(X=4)=×××=,第5次取到白球的概率为P(X=5)=××××=,所以X的分布列为X12345P
19.某酱油厂对新品种酱油进行了定价,在各超市得到售价与销售量的数据如下表:单价x(元)55.25.45.65.86销量y(瓶)9.08.48.38.07.56.8
(1)求售价与销售量的回归直线方程;(,)(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/瓶,为使工厂获得最大利润(利润=销售收入成本),该产品的单价应定为多少元?相关公式:,.参考答案:(1).(2)6.75元【分析】(1)根据回归直线方程计算公式,计算出回归直线方程.(2)求得利润的表达式,利用二次函数的性质,求得为使工厂获得最大利润(利润=销售收入成本),该产品的单价.【详解】解:(1)因为,,所以,,从而回归直线方程为.
(2)设工厂获得的利润为元,依题意得当时,取得最大值故当单价定为6.75元时,工厂可获得最大利润.【点睛】本小题主要考查回归直线方程的计算,考查实际应用问题,考查运算求解能力,属于中档题.20.已知抛物线C的方程为y2=2px(p>0),抛物线的焦点到直线l:y=2x+2的距离为.(Ⅰ)求抛物线C的方程;(Ⅱ)设点R(x0,2)在抛物线C上,过点Q(1,1)作直线交抛物线C于不同于R的两点A,B,若直线AR,BR分别交直线l于M,N两点,求|MN|最小时直线AB的方程.参考答案:【考点】K8:抛物线的简单性质.【分析】(Ⅰ)可以得到抛物线的焦点为,而根据点到直线的距离公式得到,而由p>0即可得出p=2,从而得出抛物线方程为y2=4x;(Ⅱ)容易求出R点坐标为(1,2),可设AB:x=m(y﹣1)+1,,直线AB方程联立抛物线方程消去x可得到y2﹣4my+4m﹣4=0,从而有y1+y2=4m,y1y2=4m﹣4.可写出直线AR的方程,联立y=2x+2即可得出,而同理可得到,这样即可求出,从而看出m=﹣1时,|MN|取到最小值,并且可得出此时直线AB的方程.【解答】解:(Ⅰ)抛物线的焦点为,,得p=2,或﹣6(舍去);∴抛物线C的方程为y2=4x;(Ⅱ)点R(x0,2)在抛物线C上;∴x0=1,得R(1,2);设直线AB为x=m(y﹣1)+1(m≠0),,;由得,y2﹣4my+4m﹣4=0;∴y1+y2=4m,y1y2=4m﹣4;AR:=;由,得,同理;∴=;∴当m=﹣1时,,此时直线AB方程:x+y﹣2=0.【点评】考查抛物线的标准方程,抛物线的焦点坐标,以及点到直线的距离公式,曲线上的点的坐标和曲线方程的关系,过定点的直线方程的设法,以及直线的点斜式方程,韦达定理,弦长公式,复合函数的单调性,要清楚函数的单调性.21.某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知学生小张只选甲的概率为,只选修甲和乙的概率是,至少选修一门的概率是,用表示小张选修的课程门数和没有选修的课程门数的乘积.(Ⅰ)求学生小张选修甲的概率;(Ⅱ)记“函数
为上的偶函数”为事件,求事件的概率;(Ⅲ)求的分布列和数学期望参考答案:解:(Ⅰ)设学生小张选修甲、乙、丙的概率分别为、、;依题意得——4分,所以学生小张选修甲的概率为0.4——5分(Ⅱ)若函数为上的偶函数,则=0
…………6分(Ⅲ)依题意知,
————10分,则的分布列为02P∴的数学期望为
…………12分22.已知椭圆C的中心在原点,焦点在x轴上,离心率为,过椭圆C上一点P(2,1)作x轴的垂线,垂足为Q.(Ⅰ)求椭圆C的方程;(Ⅱ)过点Q的直线l交椭圆C于点A,B,且3+=,求直线l的方程.参考答案:【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)设椭圆C的方程为+=1(a>b>0),由题意得=,+=1,a2=b2+c2.解出即可得出;(Ⅱ)由题意得点Q(2,0),设直线方程为x=ty+2(t≠0),A(x1,y1),B(x2,y2),将直线x=ty+2(t≠0),代入椭圆方程得到(2+t2)y2+4ty﹣2=0,利用向量的坐标运算性质、一元二次方程的根与系数的关系即可得出.【解答】解:(Ⅰ)设椭圆C的方程为+=1(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度港口码头土石方运输与航道疏浚合同集3篇
- 二零二五年度美食城品牌加盟代理合同3篇
- 二零二五年度深海探测设备承包生产合同3篇
- 专业化妆品购销合作方案合同2024版
- 二零二五年度艺术教育机构美术教师长期聘用合同4篇
- 2025版铝艺门定制与安装服务合同范本3篇
- 二零二五年度仓储物流消毒防疫服务承包合同4篇
- 2025年池塘水域资源管理与养护服务合同4篇
- 二零二五年度船舶打胶维修与改造合同范本3篇
- 2025年度餐饮连锁企业厨师聘请及培训体系合同3篇
- 博弈论全套课件
- CONSORT2010流程图(FlowDiagram)【模板】文档
- 脑电信号处理与特征提取
- 高中数学知识点全总结(电子版)
- GB/T 10322.7-2004铁矿石粒度分布的筛分测定
- 2023新译林版新教材高中英语必修一重点词组归纳总结
- 苏教版四年级数学下册第3单元第2课时“常见的数量关系”教案
- 弘扬中华传统文化课件
- 基于协同过滤算法的电影推荐系统设计
- 消防应急预案流程图
- 人教统编版高中语文必修下册第六单元(单元总结)
评论
0/150
提交评论