版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省南阳市宛城区2023年数学九年级第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.我们把宽与长的比等于黄金比的矩形称为黄金矩形.如图,在黄金矩形中,的平分线交边于点,于点,则下列结论错误的是()A. B. C. D.2.下列图形中,不是轴对称图形的是()A. B. C. D.3.在同一平面直角坐标系中,反比例函数y(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A. B.C. D.4.如图,在中,,将绕点旋转到'的位置,使得,则的大小为()A. B. C. D.5.设A(﹣2,y1)、B(1,y2)、C(2,y3)是双曲线上的三点,则()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y26.如果、是一元二次方程的两根,则的值是()A.3 B.4 C.5 D.67.若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣48.关于反比例函数,下列说法正确的是()A.图象过(1,2)点 B.图象在第一、三象限C.当x>0时,y随x的增大而减小 D.当x<0时,y随x的增大而增大9.如图,反比例函数和正比例函数的图象交于,两点,已知点坐标为若,则的取值范围是()A. B. C.或 D.或10.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为().A.-1或2 B.-1或1C.1或2 D.-1或2或1二、填空题(每小题3分,共24分)11.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A,B向x轴作垂线,垂足分别为D,C,若矩形ABCD的面积是9,则k的值为_____.12.如图,反比例函数的图象位于第一、三象限,且图象上的点与坐标轴围成的矩形面积为2,请你在第三象限的图象上取一个符合题意的点,并写出它的坐标______________.13.如图,的半径长为,与相切于点,交半径的延长线于点,长为,,垂足为,则图中阴影部分的面积为_______.14.若一元二次方程有一根为,则_________.15.将抛物线y=x2﹣2x+3向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为____________________________16.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.17.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么AP的长度为_____cm.18.若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.三、解答题(共66分)19.(10分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)20.(6分)2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x…3456…售价y1/元…12141618…(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?21.(6分)已知二次函数y=x2﹣2x﹣3(1)求函数图象的顶点坐标,与坐标轴的交点坐标,并画出函数的大致图象;(2)根据图象直接回答:当y<0时,求x的取值范围;当y>﹣3时,求x的取值范围.22.(8分)有三张正面分别标有数字:-1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上的概率.23.(8分)如图,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图像写出使反比例函数的值大于一次函数的值的取值范围.24.(8分)如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70°,求∠CBD的度数;(2)求证:DE=DB.25.(10分)为了测量山坡上的电线杆PQ的高度,某数学活动小组的同学们带上自制的测倾器和皮尺来到山脚下,他们在A处测得信号塔顶端P的仰角是45°,信号塔底端点Q的仰角为30°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是60°,求信号塔PQ得高度.26.(10分)如图所示,已知二次函数y=-x2+bx+c的图像与x轴的交点为点A(3,0)和点B,与y轴交于点C(0,3),连接AC.(1)求这个二次函数的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标及△ACD面积的最大值,若不存在,请说明理由.(3)在抛物线上是否存在点E,使得△ACE是以AC为直角边的直角三角形如果存在,请直接写出点E的坐标即可;如果不存在,请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】设,则,根据黄金矩形的概念结合图形计算,据此判断即可.【详解】因为矩形宽与长的比等于黄金比,因此,设,则,则选项A.,B.,D.正确,C.选项中等式,,∴;故选:C.【点睛】本题考查的是黄金分割、矩形的性质,掌握黄金比值为是解题的关键.2、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3、D【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的右侧,则a,b异号,即b<1.所以反比例函数y的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的左侧,则a,b同号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.4、B【分析】由平行线的性质可得∠C'CA=∠CAB=64°,由折叠的性质可得AC=AC',∠BAB'=∠CAC',可得∠ACC'=∠C'CA=64°,由三角形内角和定理可求解.【详解】∵CC′∥AB,
∴∠C'CA=∠CAB=64°,
∵将△ABC绕点A旋转到△AB′C′的位置,
∴AC=AC',∠BAB'=∠CAC',
∴∠ACC'=∠C'CA=64°,
∴∠C'AC=180°−2×64°=52°,
故选:B.【点睛】本题考查旋转的性质,平行线的判定,等腰三角形的性质,灵活运用旋转的性质是本题的关键.5、B【分析】将A、B、C的横坐标代入双曲线,求出对应的横坐标,比较即可.【详解】由题意知:A(﹣2,y1)、B(1,y2)、C(2,y3)在双曲线上,将代入双曲线中,得∴.故选B.【点睛】本题主要考查了双曲线函数的性质,正确掌握双曲线函数的性质是解题的关键.6、B【解析】先求得函数的两根,再将两根带入后面的式子即可得出答案.【详解】由韦达定理可得α+β=-3,又=3--=)=1+3=4,所以答案选择B项.【点睛】本题考察了二次方程的求根以及根的意义和根与系数的关系,根据得到的等量关系是解决本题的关键.7、C【解析】∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a.∴抛物线y=ax2+bx的对称轴为直线.故选C.8、D【解析】试题分析:根据反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大.可由k=-2<0,所以函数图象位于二四象限,在每一象限内y随x的增大而增大,图象是轴对称图象,故A、B、C错误.故选D.考点:反比例函数图象的性质9、D【分析】根据反比例函数和正比例函数的对称性可得,交点A与B关于原点对称,得到B点坐标,再观察图像即可得到的取值范围.【详解】解:∵比例函数和正比例函数的图象交于,两点,∴B的坐标为(1,3)观察函数图像可得,则的取值范围为或.故答案为:D【点睛】本题考查反比例函数的图像和性质.10、D【解析】当该函数是一次函数时,与x轴必有一个交点,此时a-1=0,即a=1.当该函数是二次函数时,由图象与x轴只有一个交点可知Δ=(-4)2-4(a-1)×2a=0,解得a1=-1,a2=2.综上所述,a=1或-1或2.故选D.二、填空题(每小题3分,共24分)11、1.【分析】过点A作AE⊥y轴于点E,首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是9,则矩形EOCB的面积为:4+9=1,再利用xy=k求出即可.【详解】过点A作AE⊥y轴于点E,∵点A在双曲线y=上,∴矩形EODA的面积为:4,∵矩形ABCD的面积是9,∴矩形EOCB的面积为:4+9=1,则k的值为:xy=k=1.故答案为1.【点睛】此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.12、满足的第三象限点均可,如(-1,-2)【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【详解】解:∵图象上的点与坐标轴围成的矩形面积为2,
∴|k|=2,
∴反比例函数y=的图象在一、三象限,k>0,
∴k=2,
∴此反比例函数的解析式为.∴第三象限点均可,可取:当x=-1时,y=-2综上所述,答案为:满足的第三象限点均可,如(-1,-2)【点睛】本题考查的是反比例函数系数k的几何意义,即过反比例函数图象上任意一点向两坐标轴引垂线,所得矩形的面积为|k|.13、【分析】由已知条件易求直角三角形AOH的面积以及扇形AOC的面积,根据,计算即可.【详解】∵BA与⊙O相切于点A,
∴AB⊥OA,
∴∠OAB=90°,
∵OA=2,AB=2,∴,∵,∴∠B=30°,
∴∠O=60°,∵,∴∠OHA=90°,
∴∠OAH=30°,
∴,∴,∴.故答案为:.【点睛】本题考查了切线的性质、勾股定理的运用以及扇形的面积计算,解答本题的关键是掌握扇形的面积公式.14、1【分析】直接把x=−1代入一元二次方程中即可得到a+b的值.【详解】解:把x=−1代入一元二次方程得,所以a+b=1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15、或【分析】根据函数图象向上平移加,向右平移减,可得函数解析式.【详解】解:将y=x1-1x+3化为顶点式,得:y=(x-1)1+1.将抛物线y=x1-1x+3向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为:y=(x-1-3)1+1+1;即y=(x-4)1+3或.故答案为:或.【点睛】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.16、6.1【解析】解:设路灯离地面的高度为x米,根据题意得:,解得:x=6.1.故答案为6.1.17、5-5【分析】利用黄金分割的定义计算出AP即可.【详解】解:∵P为AB的黄金分割点(AP>PB),∴AP=AB=×10=5﹣5(cm),故答案为5﹣5【点睛】本题考查黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.18、【分析】根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴,整理得,,∴当时,故答案为:.【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.三、解答题(共66分)19、通信塔CD的高度约为15.9cm.【解析】过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.【详解】过点A作AE⊥CD于E,则四边形ABDE是矩形,设CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在Rt△ABM中,BM=cm,∵AE=BD,∴,解得:x=+3,∴CD=CE+ED=+9≈15.9(cm),答:通信塔CD的高度约为15.9cm.【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.20、(1)y1=2x+6;(2)y2=x2﹣x+;(3)w=﹣x2+x﹣,1月份销售每千克猪肉所第获得的利润最大,最大利润是11元1.【分析】(1)设与x之间的函数关系式为,将(3,12)(4,14)代入解方程组即可得到结论;
(2)由题意得到抛物线的顶点坐标为(3,9),设与x之间的函数关系式为:=,将(5,10)代入=得=10,解方程即可得到结论;
(3)由题意得到w=−=2x+6−+x−=−+x−,根据二次函数的性质即可得到结论.【详解】(1)设y1与x之间的函数关系式为y1=kx+b,将(3,12)(4,14)代入y1得,,解得:,∴y1与x之间的函数关系式为:y1=2x+6;(2)由题意得,抛物线的顶点坐标为(3,9),∴设y2与x之间的函数关系式为:y2=a(x﹣3)2+9,将(5,10)代入y2=a(x﹣3)2+9得a(5﹣3)2+9=10,解得:a=,∴y2=(x﹣3)2+9=x2﹣x+;(3)由题意得,w=y1﹣y2=2x+6﹣x2+x﹣=﹣x2+x﹣,∵﹣<0,∴w由最大值,∴当x=﹣=﹣=1时,w最大=﹣×12+×1﹣=1.【点睛】本题主要考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象与性质是解题的关键.21、(1)顶点坐标为(1,4),与x轴的交点坐标为(﹣1,0),(1,0),与y轴的交点坐标为(0,﹣1),作图见解析;(2)当﹣1<x<1时,y<0;当x<0或x>1时,y>﹣1.【分析】(1)利用配方法得到y=(x﹣1)2﹣4,从而得到抛物线的顶点坐标,再计算自变量为0对应的函数值得到抛物线与y轴的交点坐标,通过解方程x2﹣2x﹣1=0得抛物线与x轴的交点坐标,然后利用描点法画函数图象;(2)结合函数图象,当y<0时,写出函数图象在x轴下方所对应的自变量的范围;当y>﹣1时,写出函数值大于﹣1对应的自变量的范围.【详解】解:(1)∵y=x2﹣2x﹣1=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,4),当x=0时,y=x2﹣2x﹣1=﹣1,则抛物线与y轴的交点坐标为(0,﹣1),当y=0时,x2﹣2x﹣1=0,解得x1=﹣1,x2=1,则抛物线与x轴的交点坐标为(﹣1,0),(1,0),如图,(2)由图可知,当﹣1<x<1时,y<0;当x<0或x>1时,y>﹣1.【点睛】本题主要考查了抛物线与x轴的交点,二次函数的图象及性质,掌握二次函数的图象及性质是解题的关键.22、(1)所有结果:(-1,-1),(-1,1),(-1,2),(1,-1)(1,1),(1,2),(2,-1),(2,1),(2,2);(2).【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【详解】(1)根据题意画出树状图如下:结果为:(-1,-1),(-1,1),(-1,2),(1,-1)(1,1),(1,2),(2,-1),(2,1),(2,2);(2)当x=-1时,y==-2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.23、(1),;(2)x<-2,或0<x<1【分析】(1)把A(1,-k+4)代入解析式,即可求出k的值;把求出的A点坐标代入一次函数的解析式,即可求出b的值;从而求出这两个函数的表达式;
(2)将两个函数的解析式组成方程,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【详解】解:(1)由题意,得,∴k=2,∴A(1,2),2=b+1∴b=1,反比例函数表达式为:,一次函数表达式为:.(2)又由题意,得,,解得∴B(-2,-1),∴当x<-2,或0<x<1时,反比例函数大于一次函数的值.【点睛】本题考查了一次函数与反比例函数的综合,能正确看图象是解题的关键.24、(1)35°;(2)证明见解析.【分析】(1)由点E是△ABC的内心,∠BAC=70°,易得∠CAD=,进而得出∠CBD=∠CAD=35°;(2)由点E是△ABC的内心,可得E点为△ABC角平分线的交点,可得∠ABE=∠CBE,∠BAD=∠CAD,可推导出∠DBE=∠BED,可得DE=DB.【详解】(1)∵点E是△ABC的内心,∠BAC=70°,∴∠CAD=,∵,∴∠CBD=∠CAD=35°;(2)∵E是内心,∴∠ABE=∠CBE,∠BAD=∠CAD.∵∠CBD=∠CAD,∴∠CBD=∠BAD,∵∠BAD+∠ABE=∠BED,∠CBE+∠CBD=∠DBE,∴∠DBE=∠BED,∴DE=DB.【点睛】此题考查了圆的内心的性质以及角平分线的性质等知识.此题综合性较强,注意数形结合思想的应用.25、100米【分析】延长PQ交直线AB于点M,连接AQ,设PM的长为x米,利用锐角三角函数即可求出x,再利用锐角三角函数即可求出QM,从而求出结论.【详解】解:延长PQ交直线AB于点M,连接AQ,如图所示:则∠PMA=90°,设PM的长为x米,在RtPAM中,∠PAM=45°,∴AM=PM=x米,∴BM=x﹣100(米),在RtPBM中,∵tan∠PBM,∴tan60°,解得:x=50(3),在RtQAM中,∵tan∠QAM,∴QM=AM•tan∠QAM=50(3)×tan30°=50()(米),∴PQ=PM﹣QM=100(米)答:信号塔PQ的高度约为100米.【点睛】此题考查的是解直角三角形的应用,掌握利用锐角三角函数解直角三角形是解决此题的关键.26、(1)y=-x2+2x+1;(2)抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为(,)且△ACD面积的最大值;(1)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形点E的坐标是(1,4)或(-2,-5).【分析】(1)因为点A(1,0),点C(0,1)在抛物线y=−x2+bx+c上,可代入确定b、c的值;(2)过点D作DH⊥x轴,设D(t,-t2+2t+1),先利用图象上点的特征表示出S△ACD=S梯形OCDH+S△AHD-S△AOC=,再利用顶点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工作计划大全
- 客服部工作计划
- 中国全自动票据分切机项目投资可行性研究报告
- 交通台实习报告10篇
- 应届生会计求职信集锦十篇
- 三年级教师述职报告6篇
- 小学教师竞岗演讲稿5篇
- 2022万圣节作文(十五篇大全)
- 参观实习工作报告汇编9篇
- 小额贷款公司各项管理制度
- 全国职业学校教师说课大赛一等奖电工技能与实训《触电急救方法说课》说课课件
- 小儿流感疾病演示课件
- 奔驰调研报告swot
- 中国教育史(第四版)全套教学课件
- 2024届广东省汕头市高一数学第一学期期末达标检测试题含解析
- 采购设备检验验收单
- 福建省泉州实验中学2024届物理高一第一学期期末质量检测试题含解析
- 公司领导班子设置方案
- 专业展览展示设计搭建公司
- 为铜制剂正名-冠菌铜® 产品课件-9-7
- 具有磁场保鲜装置的制冷设备的制作方法
评论
0/150
提交评论