版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题09三点共线问题一、【知识回顾】【三点共线模型】①函数模型:构建平面直角坐标系,求出三个点坐标,其中两个点构建一次函数模型,判断第三个点是否在函数图像上,满足则共线②平角模型如图,要证明A、B、C三点共线,可以选择一条过B点的直线PBQ,并连接AB、CB,证明∠ABP与∠CBP互为邻补角,即∠ABP+∠CBP=180°③平行线模型如图,要证明A、B、C三点共线,先证明AB∥DE,在证明BC∥DE④垂线模型如图,要证明A、B、C三点共线,先证明AC⊥MN,在证明A⊥MN【三线共点模型】①证明两条线的交点,在第三条直线上②证明三条线中两条线的交点和另外两条线的交点是同一个二、【考点类型】考点1:三点共线典例1:(2022秋·福建泉州·九年级校考阶段练习)如图,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,将SKIPIF1<0绕点B按顺时针方向旋转得到SKIPIF1<0,当点E恰好落在线段SKIPIF1<0上时,连接SKIPIF1<0,SKIPIF1<0的平分线SKIPIF1<0交SKIPIF1<0于点F,连接SKIPIF1<0.(1)求SKIPIF1<0的长;(2)求证:C、E、F三点共线.【答案】(1)SKIPIF1<0;(2)见解析【分析】(1)将SKIPIF1<0绕点SKIPIF1<0按顺时针方向旋转得到SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,从而可求SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,可得SKIPIF1<0是SKIPIF1<0中点,SKIPIF1<0即可得答案;(2)连接SKIPIF1<0,先证SKIPIF1<0,再用SKIPIF1<0得SKIPIF1<0,从而证明SKIPIF1<0即可.【详解】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0将SKIPIF1<0绕点SKIPIF1<0按顺时针方向旋转得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中,SKIPIF1<0;(2)连接SKIPIF1<0,如图:由(1)知:SKIPIF1<0平分SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三点共线.【点睛】本题考查直角三角形性质及应用,涉及勾股定理、旋转变换、等腰三角形性质等知识,解题的关键是掌握定理:直角三角形斜边上的中线等于斜边的一半.【变式1】(2022春·福建泉州·九年级校考阶段练习)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,将SKIPIF1<0绕点SKIPIF1<0顺时针旋转一定的角度SKIPIF1<0得到SKIPIF1<0,点SKIPIF1<0,SKIPIF1<0的对应点分别是SKIPIF1<0,SKIPIF1<0,连接SKIPIF1<0.(1)如图SKIPIF1<0,当点SKIPIF1<0恰好在SKIPIF1<0上时,求SKIPIF1<0的大小;(2)如图SKIPIF1<0,若SKIPIF1<0,点SKIPIF1<0是SKIPIF1<0的中点,判断四边形SKIPIF1<0的形状,并证明你的结论.(3)如图SKIPIF1<0,若点SKIPIF1<0为SKIPIF1<0中点,SKIPIF1<0求证:SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三点共线.SKIPIF1<0求SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0(2)四边形SKIPIF1<0是平行四边形,详见解析(3)①详见解析;②4【分析】(1)由旋转的性质可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由等腰三角形的性质可求SKIPIF1<0,即可求解;(2)由旋转的性质可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由“SKIPIF1<0”可证SKIPIF1<0,可得SKIPIF1<0,即可求解;(3)SKIPIF1<0通过证明点SKIPIF1<0、点SKIPIF1<0、点SKIPIF1<0、点SKIPIF1<0四点共圆,点SKIPIF1<0,点SKIPIF1<0,点SKIPIF1<0,点SKIPIF1<0四点共圆,可得SKIPIF1<0,SKIPIF1<0,可得结论;SKIPIF1<0由直角三角形的性质可求SKIPIF1<0,由圆中直径最大可求解.【详解】(1)解:SKIPIF1<0将SKIPIF1<0绕点SKIPIF1<0顺时针旋转一定的角度SKIPIF1<0得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)解:四边形SKIPIF1<0是平行四边形,理由如下:SKIPIF1<0点SKIPIF1<0是边SKIPIF1<0中点,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等边三角形,SKIPIF1<0,SKIPIF1<0绕点SKIPIF1<0顺时针旋转SKIPIF1<0得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0为等边三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0四边形SKIPIF1<0是平行四边形;(3)SKIPIF1<0证明:如图SKIPIF1<0,连接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0将SKIPIF1<0绕点SKIPIF1<0顺时针旋转一定的角度SKIPIF1<0得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0为SKIPIF1<0中点,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0点SKIPIF1<0、点SKIPIF1<0、点SKIPIF1<0、点SKIPIF1<0四点共圆,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0点SKIPIF1<0,点SKIPIF1<0,点SKIPIF1<0,点SKIPIF1<0四点共圆,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0点SKIPIF1<0,点SKIPIF1<0,点SKIPIF1<0三点共线;SKIPIF1<0解:在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0点SKIPIF1<0、点SKIPIF1<0、点SKIPIF1<0、点SKIPIF1<0四点共圆,SKIPIF1<0,SKIPIF1<0是直径,SKIPIF1<0最大值为SKIPIF1<0.【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,旋转的性质,圆的有关知识,平行四边形的判定,直角三角形的性质等知识,灵活运用这些性质解决问题是解题的关键.【变式2】(2021春·福建厦门·九年级校考阶段练习)抛物线C1:y=﹣x2+2mx﹣m2+m+3的顶点为A,抛物线C2:y=﹣(x+m+4)2﹣m﹣1的顶点为B,其中m≠﹣2,抛物线C1与C2相交于点P.(1)当m=1时,求抛物线C1的顶点坐标;(2)已知点C(﹣2,1),求证:点A,B,C三点共线;(3)设点P的纵坐标为q,求q的取值范围.【答案】(1)抛物线C1的顶点坐标为(1,4)(2)见解析(3)SKIPIF1<0【分析】(1)将m=1代入抛物线C1:y=﹣x2+2mx﹣m2+m+3,先按照x=﹣SKIPIF1<0求得抛物线C1的顶点横坐标,再将横坐标代入解析式求得纵坐标即可;(2)先得出A(m,m+3),B(﹣m﹣4,﹣m﹣1),再用待定系数法求得直线AB的解析式,然后将点C的横坐标代入直线AB的解析式,计算得出y值等于点C的纵坐标即可证得结论;(3)联立SKIPIF1<0,求得方程组的解,从而可用含m的式子表示出点P的坐标,将点P的纵坐标配方,由二次函数的性质可得答案.(1)解:当m=1时,抛物线C1:y=﹣x2+2mx﹣m2+m+3可化为:y=﹣x2+2x+3,∴其顶点横坐标为:x=﹣SKIPIF1<0=1,将x=1代入y=﹣x2+2x+3,得y=﹣1+2+3=4,∴当m=1时,抛物线C1的顶点坐标为(1,4);(2)证明:∵抛物线C1:y=﹣x2+2mx﹣m2+m+3=﹣(x﹣m)2+m+3,∴A(m,m+3);∵抛物线C2:y=﹣(x+m+4)2﹣m﹣1的顶点为B,∴B(﹣m﹣4,﹣m﹣1),设直线AB的解析式为y=kx+b(k≠0),将A(m,m+3),B(﹣m﹣4,﹣m﹣1)代入,得SKIPIF1<0,解得SKIPIF1<0,∴直线AB的解析式为y=x+3,当x=﹣2时,y=x+3=﹣2+3=1,∴点C(﹣2,1)在直线AB上,∴点A,B,C三点共线;(3)解:联立SKIPIF1<0,把①代入②,得:﹣x2+2mx﹣m2+m+3=﹣(x+m+4)2﹣m﹣1,解得x=﹣SKIPIF1<0,把x=﹣SKIPIF1<0代入①,得:y=﹣SKIPIF1<0+2m×(﹣SKIPIF1<0)﹣m2+m+3=﹣m2﹣4m﹣SKIPIF1<0,∴方程组的解为:SKIPIF1<0,∴点P的坐标为(﹣SKIPIF1<0,﹣m2﹣4m﹣SKIPIF1<0),∴点P的纵坐标q=﹣m2﹣4m﹣SKIPIF1<0=﹣(m+2)2+SKIPIF1<0,∵m≠﹣2,-1<0,∴q的取值范围是q<SKIPIF1<0.【点睛】本题属于二次函数综合题,考查了抛物线的顶点坐标的求法、待定系数法求函数的解析式、三点共线的证明及二次函数的性质等知识点,熟练掌握待定系数法及二次函数的性质是解题的关键.【变式3】(2022秋·福建福州·九年级统考期末)如图,已知矩形ABCD中,SKIPIF1<0于点E,SKIPIF1<0.(1)若SKIPIF1<0,求CE的长;(2)设点C关于AD的对称点为F,求证:B,E,F三点共线.【答案】(1)SKIPIF1<0(2)见解析【分析】(1)根据矩形的性质以及等角的余角相等可得SKIPIF1<0,进而可得SKIPIF1<0,列出比例式代入数值,即可求得SKIPIF1<0;(2)根据题意点C关于AD的对称点为F,由(1)可得SKIPIF1<0,根据对称可得C,D,F三点共线,进而根据矩形的性质可得SKIPIF1<0,SKIPIF1<0,证明SKIPIF1<0,得到SKIPIF1<0,即可证明SKIPIF1<0,即B,E,F三点共线.(1)∵四边形ABCD是矩形,SKIPIF1<0.SKIPIF1<0SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.SKIPIF1<0.(2)由(1)得SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.∵点C与点F关于AD对称,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,∴C,D,F三点共线.SKIPIF1<0.∵四边形ABCD是矩形,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0.SKIPIF1<0,SKIPIF1<0∴B,E,F三点共线.【点睛】本题考查了相似三角形的性质与判定,矩形的性质,掌握相似三角形的性质与判定是解题的关键.考点2:三线共点典例2:(2021·福建·统考中考真题)如图,已知线段SKIPIF1<0,垂足为a.(1)求作四边形SKIPIF1<0,使得点B,D分别在射线SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(要求:尺规作图,不写作法,保留作图痕迹)(2)设P,Q分别为(1)中四边形SKIPIF1<0的边SKIPIF1<0的中点,求证:直线SKIPIF1<0相交于同一点.【答案】(1)作图见解析;(2)证明见解析【分析】(1)根据SKIPIF1<0,点B在射线SKIPIF1<0上,过点A作SKIPIF1<0;根据等边三角形性质,得SKIPIF1<0,分别过点A、B,SKIPIF1<0为半径画圆弧,交点即为点C;再根据等边三角形的性质作CD,即可得到答案;(2)设直线SKIPIF1<0与SKIPIF1<0相交于点S、直线SKIPIF1<0与SKIPIF1<0相交于点SKIPIF1<0,根据平行线和相似三角形的性质,得SKIPIF1<0,从而得SKIPIF1<0,即可完成证明.【详解】(1)作图如下:四边形SKIPIF1<0是所求作的四边形;(2)设直线SKIPIF1<0与SKIPIF1<0相交于点S,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0设直线SKIPIF1<0与SKIPIF1<0相交于点SKIPIF1<0,同理SKIPIF1<0.∵P,Q分别为SKIPIF1<0的中点,∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴点S与SKIPIF1<0重合,即三条直线SKIPIF1<0相交于同一点.【点睛】本题考查了尺规作图、等边三角形、直角三角形、平行线、相似三角形等基础知识,解题的关键是熟练掌握推理能力、空间观念、化归与转化思想,从而完成求解.【变式1】(2020·福建·统考中考真题)如图,SKIPIF1<0为线段SKIPIF1<0外一点.(1)求作四边形SKIPIF1<0,使得SKIPIF1<0,且SKIPIF1<0;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的四边形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0相交于点SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中点分别为SKIPIF1<0,求证:SKIPIF1<0三点在同一条直线上.【答案】(1)详见解析;(2)详见解析【分析】(1)按要求进行尺规作图即可;(2)通过证明角度之间的大小关系,得到SKIPIF1<0,即可说明SKIPIF1<0三点在同一条直线上.【详解】解:(1)则四边形SKIPIF1<0就是所求作的四边形.(2)∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0分别为SKIPIF1<0,SKIPIF1<0的中点,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.连接SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵点SKIPIF1<0在SKIPIF1<0上∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0三点在同一条直线上.【点睛】本题考查尺规作图、平行线的判定与性质、相似三角形的性质与判定等基础知识,考查推理能力、空间观念与几何直观,考查化归与转化思想.巩固训练、单选题1.(2023春·八年级课时练习)如图,正方形ABCD中,AB=4,延长DC到点F(0<CF<4),在线段CB上截取点P,使得CP=CF,连接BF、DP,再将△DCP沿直线DP折叠得到△DEP.下列结论:①若延长DP,则DP⊥FB;②若连接CE,则SKIPIF1<0;③连接PF,当E、P、F三点共线时,CF=4SKIPIF1<0﹣4;④连接AE、AF、EF,若△AEF是等腰三角形,则CF=4SKIPIF1<0﹣4;其中正确有()A.4个 B.3个 C.2个 D.1个【答案】C【分析】证明△DCP≌△BCF,利用全等三角形的性质与三角形的内角和定理可判断①,证明DP⊥EC,结合BF⊥DP,可判断②,当E,P,F共线时,求解∠DPC=∠DPE=SKIPIF1<0.在CD上取一点J,使得CJ=CP,则∠CJP=∠CPJ=SKIPIF1<0,DJ=JP,设CJ=CP=x,则DJ=JP=SKIPIF1<0x,可得SKIPIF1<0x+x=4,解方程可判断③,连接CE,BD.由③可知,当CF=4SKIPIF1<0﹣4时,∠CDP=∠EDP=SKIPIF1<0,证明点E在DB上,EA=EC,可得∠ECF>∠EFC,EF>EC,可判断④,从而可得答案.【详解】解:①如图1中,延长DP交BF于点H.∵四边形ABCD是正方形,∴CD=CB,∠DCP=∠BCF=90°,在△DCP和△BCF中,SKIPIF1<0,∴△DCP≌△BCF(SAS),∴∠CDP=∠CBF,∵∠CPD=∠BPH,∴∠DCP=∠BHP=90°,∴DP⊥BF,故①正确.②∵C,E关于DP对称,∴DP⊥EC,∵BF⊥DP,∴SKIPIF1<0,故②正确.③如图2中,当E,P,F共线时,∠DPC=∠DPE=SKIPIF1<0.在CD上取一点J,使得CJ=CP,则∠CJP=∠CPJ=SKIPIF1<0,∴SKIPIF1<0∴∠JDP=∠JPD=SKIPIF1<0,∴DJ=JP,设CJ=CP=x,则DJ=JP=SKIPIF1<0x,∴SKIPIF1<0x+x=4,∴x=4SKIPIF1<0﹣4,∴CF=4SKIPIF1<0﹣4,故③错误,④如图3中,连接CE,BD.由③可知,当CF=4SKIPIF1<0﹣4时,∠CDP=∠EDP=SKIPIF1<0,∴∠CDE=SKIPIF1<0,∴点E在DB上,∵A,C关于BD对称,∴EA=EC,∵∠ECF>∠EFC,∴EF>EC,∴EF>EA,∴此时△AEF不是等腰三角形,故④错误.故选:C.【点睛】本题考查的是全等三角形的判定与性质,等腰三角形的判定,三角形内角和定理的应用,二次根式的除法运算,轴对称的性质,熟练的应用以上知识解题是关键.2.(2023·全国·八年级专题练习)如图,在长方形ABCD中,ADSKIPIF1<0BC,ABSKIPIF1<0CD,E在AD上.AD=m,AE=n(m>n>0).将长方形沿着BE折叠,A落在A′处,A'E交BC于点G,再将∠A′ED对折,点D落在直线A′E上的D′处,C落在C′处,折痕EF,F在BC上,若D、F、D′三点共线,则BF=()A.m+SKIPIF1<0n B.SKIPIF1<0 C.SKIPIF1<0 D.m﹣n【答案】D【分析】连接DD′,证明∠EFD是直角,然后证明△BEF和△EFE全等即可得出结论.【详解】解:如图,连接DD′,∵D、F、D′三点共线,四边形EFC′D′是由四边形EFCD翻折得到,∴△EFD≌△EFD′,∠DEF=∠D′EF,∴∠EFD=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∵∠AEB=∠NEB,∴∠BEF=90°,在△BEF和△DFE中,SKIPIF1<0,∴△BEF≌△DFE(ASA),∴EF=ED,∵AD=m,AE=n,∴EF=ED=m﹣n.故选:D.【点睛】本题结合矩形考查了折叠变换,熟知折叠的性质并灵活运用是解题的关键,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.(2022秋·贵州黔西·九年级统考期末)如图,⊙O的半径为2SKIPIF1<0,PA,PB,CD分别切⊙O于点A,B,E,CD分别交PA,PB于点C,D,且P,E,O三点共线.若∠P=60°,则CD的长为()A.4 B.2SKIPIF1<0 C.3SKIPIF1<0 D.6【答案】A【分析】SKIPIF1<0,先证明SKIPIF1<0,得出SKIPIF1<0,SKIPIF1<0,得出SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0,在SKIPIF1<0中,设SKIPIF1<0,则SKIPIF1<0,利用勾股定理求出SKIPIF1<0,即可求解.【详解】解:连接SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0,SKIPIF1<0PA,PB,分别切⊙O于点A,B,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等边三角形,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0,如下图根据等腰三角形的性质,点SKIPIF1<0为SKIPIF1<0的中点,SKIPIF1<0,在SKIPIF1<0中,设SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故选:A.【点睛】本题考查了圆的切线,三角形全等、等腰三角形、勾股定理,解题的关键是添加适当的辅助线,掌握切线的性质来求解.4.(2022秋·新疆乌鲁木齐·九年级校考期中)如图,Rt△ABC中,∠ACB=90°,∠B=60°,AB=6,将Rt△ABC绕点C顺时针旋转到Rt△A’B’C.当A’、B’、A三点共线时,AA’=(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根据直角三角形的性质,可得BC的长,根据旋转的性质,可得A′B′的长,B′C的长,∠A′、∠A′B′C,根据邻补角的定义,可得∠AB′C的度数,根据等腰三角形的判定,可得AB′,根据线段的和差,可得答案.【详解】解:由在Rt△ABC中,∠ACB=90°,∠B=60°,AB=6,得∠BAC=30°,BC=3.由旋转的性质,得A′B′=AB=6,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,AC=A′C.由等腰三角形的性质,得∠CAB′=∠A′=30°.由邻补角的定义,得∠AB′C=180°-∠A′B′C=120°.由三角形的内角和定理,得∠ACB′=180°-∠AB′C-∠B′AC=30°.∴∠B′AC=∠B′CA=30°,AB′=B′C=BC=3.A′A=A′B′+AB′=6+3=9,故选:D.【点睛】本题考查了旋转的性质,利用了旋转的性质,直角三角形的性质,等腰三角形的性质,利用等腰三角形的判定得出AB′=B′C是解题关键.5.(2022秋·山东日照·八年级统考期中)如图,已知SKIPIF1<0和SKIPIF1<0都是等边三角形,且SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三点共线.SKIPIF1<0与SKIPIF1<0交于点SKIPIF1<0,SKIPIF1<0与SKIPIF1<0交于点SKIPIF1<0,SKIPIF1<0与SKIPIF1<0交于点SKIPIF1<0,连结SKIPIF1<0.以下五个结论:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0是等边三角形;⑤SKIPIF1<0.其中正确结论的有(
)个A.5 B.4 C.3 D.2【答案】A【分析】根据等边三角形的性质、全等三角形的判定与性质对各结论逐项分析即可判定.【详解】解:①∵△ABC和△CDE为等边三角形。∴AC=BC,CD=CE,∠BCA=∠DCE=60°∴∠ACD=∠BCE在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,CD=CE∴△ACD≌△BCE(SAS)∴AD=BE,∠ADC=∠BEC,则①正确;②∵∠ACB=∠DCE=60°∴∠BCD=60°∴△DCE是等边三角形∴∠EDC=60°=∠BCD∴BC//DE∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,②正确;③∵∠DCP=60°=∠ECQ在△CDP和△CEQ中,∠ADC=∠BEC,CD=CE,∠DCP=∠ECQ∴△CDP≌△CEQ(ASA)∴CР=CQ∴∠CPQ=∠CQP=60°,∴△PC2是等边三角形,③正确;④∠CPQ=∠CQP=60°∴∠QPC=∠BCA∴PQ//AE,④正确;⑤同④得△ACP≌△BCQ(ASA)∴AP=BQ,⑤正确.故答案为A.【点睛】本题主要考查了等边三角形的性质、全等三角形的判定与性质等知识点,熟练掌握全等三角形的判定与性质是解答本题的关键.二、填空题6.(2023秋·浙江宁波·九年级统考期末)如图,在正方形SKIPIF1<0中,点E在SKIPIF1<0上,SKIPIF1<0,连接SKIPIF1<0,取SKIPIF1<0中点F,过F作SKIPIF1<0且使得SKIPIF1<0,连接SKIPIF1<0并延长,将SKIPIF1<0绕点C旋转到SKIPIF1<0,当SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三点共线且SKIPIF1<0时,SKIPIF1<0______.【答案】SKIPIF1<0【分析】解:如图,过SKIPIF1<0作SKIPIF1<0于SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,过SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,连接SKIPIF1<0,证明SKIPIF1<0,SKIPIF1<0,设SKIPIF1<0,求解SKIPIF1<0,求解SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,证明SKIPIF1<0,SKIPIF1<0,过SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,求解SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,过SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,可得SKIPIF1<0,再解直角三角形可得答案.【详解】解:如图,过SKIPIF1<0作SKIPIF1<0于SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,过SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,连接SKIPIF1<0,∵SKIPIF1<0中点为F,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,设SKIPIF1<0,∵正方形SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由辅助线可得:四边形SKIPIF1<0为矩形,∴SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,过SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,由SKIPIF1<0,同理可得:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,过SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,由旋转可得:SKIPIF1<0,∴设SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0.故答案为:SKIPIF1<0.【点睛】本题考查的是正方形的性质,勾股定理的应用,旋转的性质,矩形的判定与性质,线段的垂直平分线的性质,等腰三角形的性质与判定,锐角三角函数的应用,本题难度很大,计算量大,对学生要求高,细心的计算是解本题的关键.7.(2023·全国·九年级专题练习)如图SKIPIF1<0中,SKIPIF1<0与SKIPIF1<0的平分线相交于H,过点H作SKIPIF1<0交SKIPIF1<0于E,交SKIPIF1<0于F,SKIPIF1<0于D,以下四个结论①SKIPIF1<0;②SKIPIF1<0;③点H到SKIPIF1<0各边的距离相等;④若B,H,D三点共线时,SKIPIF1<0一定为等腰三角形.其中正确结论的序号为_____.【答案】②③④【分析】①利用三角形的内角和定理和角平分线平分角,进行求解;②证明SKIPIF1<0为等腰三角形,即可得证;③利用角平分线的性质,即可得证;④证明SKIPIF1<0,即可得证.【详解】解,①∵SKIPIF1<0与SKIPIF1<0的平分线相交于H,∴SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,故①错误;②∵SKIPIF1<0与SKIPIF1<0的平分线相交于H,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故②正确;③过SKIPIF1<0作SKIPIF1<0,∵SKIPIF1<0与SKIPIF1<0的平分线相交于H,SKIPIF1<0,∴SKIPIF1<0,∴点H到△ABC各边的距离相等,故③正确;④若B,H,D三点共线时,则SKIPIF1<0,且SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0(SKIPIF1<0),∴SKIPIF1<0,∴SKIPIF1<0一定为等腰三角形,故④正确.故答案为:②③④;【点睛】本题考查角平分线的性质,等腰三角形的判断和性质,全等三角形的判定和性质.熟练掌握角平分线平分角,角平分线上的点到角两边的距离相等,是解题的关键.8.(2022春·福建龙岩·八年级校联考期中)已知矩形ABCD中,AB=8,BC=10,将△ABE沿BE对折,点A的对应点为SKIPIF1<0,连接SKIPIF1<0C,当E、SKIPIF1<0、C恰好三点共线时,AE的值为____________【答案】4【分析】根据翻折的性质可得BA=BA′=CD=8,∠AEB=∠A′EB,然后根据四边形ABCD是矩形,利用勾股定理即可解决问题.【详解】解:根据翻折的性质可知:BA=BA′=CD=8,∠AEB=∠A′EB,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEB=∠CBE,∴∠CEB=∠CBE,∴CE=CB=10,在Rt△DEC中,根据勾股定理得:SKIPIF1<0,∴AE=AD-DE=10-6=4,故答案为:4.【点睛】本题考查折叠的性质和矩形的性质,勾股定理,熟练掌握折叠的性质是解决问题的关键.9.(2022春·福建泉州·八年级统考期末)如图,在SKIPIF1<0中,E点是BD的中点,MN经过E点分别与AD、BC相交于点M、N.下列四个结论:①SKIPIF1<0;②SKIPIF1<0;③A、C、E三点共线;④若SKIPIF1<0,则SKIPIF1<0.其中正确的结论有____.(写出所有正确结论的序号)【答案】①③④【分析】根据平行四边形的性质及全等三角形的判定和性质可判断①;结合图形可判断②;利用平行四边形的性质及全等三角形的判定和性质,对顶角的性质可判断③;利用平行四边形的性质及三角形的面积公式可判断④.【详解】解:∵平行四边形ABCD中,E是BD的中点,∴BE=DE,AD∥BC,AD=BC,∴∠MDE=∠NBE,∠DME=∠BNE,∴∆DME≅∆BNE,∴DM=BN,∴AM=CN,故①正确;由图可得:BM>AB≠AD=BC,故②错误;连接AE、CE,四边形ABCD为平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,∵平行四边形ABCD中,E是BD的中点,∴BE=DE,∴∆ADE≅∆CBE,∴AE=CE,∠AED=∠CEB,点A、E、C三点共线,故③正确;如图所示:过点D、E两点向BC作垂线分别为Q和P点,∵E是BD的中点,且点E为平行四边形对角线的交点,∴DQ=2EP,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,故④正确;故答案为:①③④.【点睛】题目主要考查平行四边形的性质,全等三角形的判定和性质等,理解题意综合运用这些知识点是解题关键.10.(2022·福建·模拟预测)在平面直角坐标系SKIPIF1<0中,点SKIPIF1<0都在反比例函数SKIPIF1<0的图象上,且SKIPIF1<0.现给出以下说法:①若A,O,B三点共线,则SKIPIF1<0;②若SKIPIF1<0,则A,O,B三点共线;③线段OA长度的最小值是SKIPIF1<0;④以A,O,B为顶点的三角形不可能是直角三角形.其中正确的是__________.(写出所有正确说法的序号)【答案】③【分析】根据反比例函数的图像性质及两点间的距离公式逐个分析求解即可.【详解】解:对于①:直线AO的解析式为SKIPIF1<0,当A,O,B三点共线时,点SKIPIF1<0在直线AO上,∴SKIPIF1<0,即:SKIPIF1<0,整理得到:SKIPIF1<0,又SKIPIF1<0,此时A、B两点重合,而已知前提是A,O,B三点共线,即A点与B点不重合,故①错误;对于②:当SKIPIF1<0时,SKIPIF1<0,∴SKIPIF1<0,整理得到:SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,而A,O,B三点共线时,由①中可知SKIPIF1<0,∴由SKIPIF1<0推不出A,O,B三点共线,故②错误;对于③:∵SKIPIF1<0,∴SKIPIF1<0,故③正确;对于④:当以SKIPIF1<0为直角三角形的直角顶点时:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,整理得到:SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴只需要满足:SKIPIF1<0,此时△ABO必定是以A为直角的直角三角形,故④错误;故答案为:③.【点睛】本题考查了反比例函数的图像及性质、两点之间距离公式及完全平方式的变形,熟练掌握图形的性质,计算过程中细心即可.三、解答题11.(2022秋·福建泉州·八年级统考期末)如图,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)试说明SKIPIF1<0与SKIPIF1<0满足什么等量关系时,点D、点C、点E三点共线.(2)连接SKIPIF1<0,连接SKIPIF1<0交SKIPIF1<0于F点,若点F恰好是线段SKIPIF1<0的中点,求证:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)见解析【分析】(1)由题意易证SKIPIF1<0,可得SKIPIF1<0,可得SKIPIF1<0,由同角的余角可知SKIPIF1<0,由三角形的内角和可得SKIPIF1<0,当SKIPIF1<0时,可得SKIPIF1<0,求得SKIPIF1<0,即可证明结论;(2)如图,作辅助线,构建全等三角形,证明SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,再证明SKIPIF1<0,可得结论.【详解】(1)当SKIPIF1<0时,点D、点C、点E三点共线.理由如下:在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0故当SKIPIF1<0时,点D、点C、点E三点共线;(2)证明:如图,过A作SKIPIF1<0于M,∵SKIPIF1<0,∴SKIPIF1<0,.∵F是SKIPIF1<0的中点,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0.【点睛】本题考查全等三角形的判定和性质、三角形的内角和定理,解题的关键是灵活运用全等三角形的性质和判定解决问题,属于中考常考题型.12.(2023秋·河北邯郸·九年级统考期末)如图,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,动点SKIPIF1<0从点SKIPIF1<0出发,沿SKIPIF1<0以每秒5个单位长度的速度向终点SKIPIF1<0运动,过点SKIPIF1<0作SKIPIF1<0于点SKIPIF1<0,将线段SKIPIF1<0绕点SKIPIF1<0逆时针旋转90°得到线段SKIPIF1<0,连接SKIPIF1<0.设点SKIPIF1<0的运动时间为SKIPIF1<0秒SKIPIF1<0.(1)线段SKIPIF1<0的长为__________,线段SKIPIF1<0的长为__________(用含SKIPIF1<0的代数式表示);(2)当点SKIPIF1<0与点SKIPIF1<0重合时,求SKIPIF1<0的值;(3)当SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三点共线时,求SKIPIF1<0的值;(4)当SKIPIF1<0为钝角三角形时,直接写出SKIPIF1<0的取值范围.【答案】(1)5t;3t(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0或SKIPIF1<0【分析】(1)根据路程SKIPIF1<0速度SKIPIF1<0时间即可求出SKIPIF1<0;再由勾股定理求得SKIPIF1<0,然后证SKIPIF1<0,得SKIPIF1<0,即可求出SKIPIF1<0,(2)当点SKIPIF1<0与点SKIPIF1<0重合时,则SKIPIF1<0即可;(3)当SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三点共线时,可得SKIPIF1<0,根据相似三角形对应边成比例,即可得出关于SKIPIF1<0的方程;(4)过SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,当点SKIPIF1<0在SKIPIF1<0上时,SKIPIF1<0,当点SKIPIF1<0在SKIPIF1<0左边时,SKIPIF1<0都为钝角,求出点SKIPIF1<0在SKIPIF1<0上时,SKIPIF1<0的值,当点SKIPIF1<0在SKIPIF1<0边上时,SKIPIF1<0,若点SKIPIF1<0在SKIPIF1<0外,则SKIPIF1<0为钝角,再利用相似求出点SKIPIF1<0在SKIPIF1<0上时的SKIPIF1<0,从而解决问题.【详解】(1)解:SKIPIF1<0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水上乐园策划合同模板
- 彭州品牌保安合同范例
- 2024年江苏客车驾驶员从业资格证考试题库
- 2024年南京客运资格考试技巧答题模板下载
- 授权挂牌协议合同范例
- 工程施工承包合同范例
- 村里宅基转让合同范例
- 橱柜衣柜招商合同范例
- 2024年山东道路客运输从业资格证考试真题保过
- 保健食品批文转让合同模板
- 2024中国铁路成都局招聘笔试冲刺题(带答案解析)
- 肺功能进修总结汇报
- 多图中华民族共同体概论课件第十一讲 中华一家与中华民族格局底定(清前中期)根据高等教育出版社教材制作
- 数据编码第二课时课件高中信息技术教科版必修1
- 2.贵州省地方标准项目申报书
- 小学三年级一位数乘两位数的乘法练习题(500道)
- “读思达”教学法在整本书阅读教学中的实践
- 老旧小区燃气管道改造方案
- 生产制造企业车间管理实务课程
- 医院护理质控工作汇报
- 新HSK1-6词汇大纲文档
评论
0/150
提交评论