版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省鄂州市沙窝中学2022-2023学年高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.对于任意实数a,b,c,d;命题:其中正确的个数是(
)
A、1
B、2
C、3
D、4参考答案:C2.已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a=f(log47),b=f(log3),c=f(0.20.6),则a,b,c的大小关系是()A.c<b<a
B.b<c<a
C.b<a<c
D.a<b<c参考答案:C略3.光线入射线在直线
上,经过轴反射到直线上,再经过轴反射到上,则直线的方程为
(
)
A.
B.
C.
D.参考答案:B4.已知变量x和y满足关系,变量y与z正相关.下列结论中正确的是()A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关参考答案:A因为变量和满足关系,一次项系数为,所以与负相关;变量与正相关,设,所以,得到,一次项系数小于零,所以与负相关,故选C.5.阅读右边的程序框图,运行相应的程序,输出的值为(
).A. B. C. D.参考答案:A根据框图的循环结构,依次:,;,;,;跳出循环,∴输出结果,故选.6.已知f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是()A.0
B.1
C.2
D.3参考答案:D略7.观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为().A.76
B.80 C.86 D.92参考答案:B略8.在△ABC中,角A,B,C所对边长分别为a,b,c,若a2+b2=2c2,则cosC的最小值为()A. B. C. D.参考答案:C【考点】余弦定理.【专题】计算题;压轴题.【分析】通过余弦定理求出cosC的表达式,利用基本不等式求出cosC的最小值.【解答】解:因为a2+b2=2c2,所以由余弦定理可知,c2=2abcosC,cosC==.故选C.【点评】本题考查三角形中余弦定理的应用,考查基本不等式的应用,考查计算能力.9.已知命题p:?x∈R,x﹣2>lgx,命题q:?x∈R,x2>0,则()A.命题p∨q是假命题 B.命题p∧q是真命题C.命题p∨(¬q)是假命题 D.命题p∧(¬q)是真命题参考答案:D【考点】复合命题的真假.【分析】由题设条件,先判断出命题p:?x∈R,x﹣2>lgx是真命题,命题q:?x∈R,x2>0是假命题,再判断复合命题的真假.【解答】解:当x=10时,10﹣2=8>lg10=1,故命题p:?x∈R,x﹣2>lgx是真命题;当x=0时,x2=0,故命题q:?x∈R,x2>0是假命题,∴题pVq是真命题,命题p∧q是假命题,命题pV(¬q)是真命题,命题p∧(¬q)是真命题,故选D.10.已知椭圆方程为,则该椭圆的长轴长是(A)2
(B)1
(C)
(D)参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据:由资料显示对呈线性相关关系。x24568y3040605070
根据上表提供的数据得到回归方程中的,预测销售额为115万元时约需
万元广告费.参考答案:1512.设函数f(x)=g(x)+x2,若曲线y=g(x)在点(1,g(x))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为(写出一般式)参考答案:4x﹣y=0【考点】利用导数研究曲线上某点切线方程.【分析】先根据曲线y=g(x)在点(1,g(1))处的切线方程求出g'(1)与g(1),再通过求f'(1)求出切线的斜率,以及切点坐标,即可求出切线方程.【解答】解:∵曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,∴g'(1)=2,g(1)=3∵f(x)=g(x)+x2,∴f'(x)=g'(x)+2x即f'(1)=g'(1)+2=4,f(1)=g(1)+1=4∴切点坐标为(1,4),斜率为4∴曲线y=f(x)在点(1,f(1))处的切线方程为4x﹣y=0故答案为:4x﹣y=0.【点评】本题主要考查了导数的几何意义,以及如何求切线方程,题目比较新颖,属于基础题.13.已知椭圆的上焦点为,直线和与椭圆相交于点,,,,则
.参考答案:814.已知平面向量满足,且,则=.参考答案:【考点】9R:平面向量数量积的运算.【分析】由,两边平方,可得?=0,再由向量模的平方即为向量的平方,计算即可得到所求值.【解答】解:由,可得(+)2=(﹣)2,化为2+2+2?=2+2﹣2?,即有?=0,则2=2+2﹣2?=22+12﹣0=5,可得=.故答案为:.15.在△ABC中,2sinAcosB=sinC,那么△ABC一定是*****
.参考答案:等腰三角形
略16.在等差数列{an}中,公差=____.参考答案:略17.已知实数满足,则的最小值为
▲
.参考答案:2略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在四面体ABCD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点,求证:(1)直线EF∥面ACD;(2)BD⊥面EFC.参考答案:【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)根据已知中E,F分别为AB,BD的中点,由三角形中位线定理可得EF∥AD,再由线面平行的判定定理,即可得到直线EF∥面ACD;(2)由AD⊥BD结合(1)的结论可得EF⊥BD,再由CB=CD,结合等腰三角形“三线合一”的性质,得到CF⊥BD,结合线面垂直的判定定理即可得到BD⊥面EFC.【解答】证明:(1)E,F分别为AB,BD的中点?EF∥AD.(2)19.(12)已知命题p:方程表示焦点在y轴上的椭圆,命题q:双曲线的离心率,若为真命题,为假命题,求实数的取值范围.参考答案:(12)解:………………2
--------------------------------4
---------5
------------8
---------------------------------------11故m的取值范围为
---------------------------------------12略20.已知椭圆的对称轴为坐标轴,离心率,短轴长为,求椭圆的方程.参考答案:或21.如图,四棱锥S﹣ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD.(1)求证:SO⊥平面ABCD;(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A﹣PCD的体积.参考答案:【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.【专题】综合题;转化思想;综合法;立体几何.【分析】(1)根据线面垂直的判定定理,容易判断BD⊥平面SAC,所以BD⊥SO,而SO又是等腰三角形底边AC的高,所以SO⊥AC,从而得到SO⊥平面ABCD;(2)连接OP,求出P到面ABCD的距离为,利用V三棱锥A﹣PCD=V三棱锥P﹣ACD,这样即可求出三棱锥A﹣PCD的体积.【解答】(1)证明:∵底面ABCD是菱形,∴AC⊥BD.又∵BD⊥SA,SA∩AC=A,∴BD⊥平面SAC.又∵SO?平面SAC,∴BD⊥SO.∵SA=SC,AO=OC,∴SO⊥AC.又∵AC∩BD=O,∴SO⊥平面ABCD.(2)解:连接OP,∵SB∥平面APC,SB?平面SBD,平面SBD∩平面APC=OP,∴SB∥OP.又∵O是BD的中点,∴P是SD的中点.由题意知△ABD为正三角形.∴OD=1.由(1)知SO⊥平面ABCD,∴SO⊥OD.又∵SD=2,∴在Rt△SOD中,SO=,∴P到面ABCD的距离为,∴∴VA﹣PCD=VP﹣ACD=×(×2×2sin120°)×=.【点评】考查线面垂直的判定定理,菱形对角线的性质,线面平行的性质定理,以及三角形的面积公式,三棱锥的体积公式.22.如图所示,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD=a,M,N分别是AB,PC的中点,
(1)求平面PCD与平面ABCD所成二面角的大小;(2)求证:MN⊥平面PCD;(3)当AB的长度变化时,求异面直线PC与AD所成角的可能范围。参考答案:解
(1)PA⊥平面ABCD,CD⊥AD,∴PD⊥CD。故∠PDA是平面PCD与平面ABCD所成二面角的平面角。在Rt△PAD中,PA⊥AD,PA=AD,∴∠PDA=45°…3分(2)如图,取PD中点E,连结AE,EN,又M,N分别是AB,PC的中点,∴EN∥CD∥AB
∴AMNE是平行四边形∴MN∥AE。在等腰Rt△PAD中,AE是斜边的中线。∴AE⊥PD。又CD⊥AD,CD⊥PD
∴CD⊥平面PAD,∴CD⊥AE,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《钢结构的基本知识》课件
- 2024年度橱柜定制与合作伙伴关系合同
- 2024年度汽车修理工非全日制劳动合同3篇
- 2024年度建筑工程设计与施工管理合同
- 2024年度云计算数据中心设计与建设合同
- 2024年度光伏组件供应与安装合同2篇
- 幼儿园课件图
- 2024中国石化江汉油田分公司毕业生招聘71人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国外运华南限公司园招聘20人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国人民财产保险股份限公司毕节分公司招聘理赔人员7人(贵州)易考易错模拟试题(共500题)试卷后附参考答案
- 医疗废物流失泄漏应急处理流程图
- 长方形、正方形的面积和周长复习课件
- 敏捷开发测试规范V01
- 信号与系统(第十章Z-变换)
- 消防报警主机操作步骤
- 广东省高级人民法院民一庭关于建设工程施工合同纠纷案件若干问题的意见
- 家装施工组织设计方案模板
- 项目四 三人表决器ppt课件
- 110kV兑山变电站进线工程(钢管杆组立)施工方案
- 自动生成编号抽奖券模板
- 公司付款承诺书4篇
评论
0/150
提交评论