版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山西省忻州市阳明堡镇堡内中学高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知点的极坐标是(1,),则过点且垂直极轴的直线方程是
(
) A.
B.
C.
D.
参考答案:C2.已知集合S={x∈N|﹣2<x﹣1<4,且x≠1},则集合S的真子集的个数是()A.32B.31C.16D.15参考答案:D考点:子集与真子集.专题:计算题.分析:根据题意,首先求得S,可得其中有4个元素,由集合的元素数目与子集数目的关系,可得其子集的数目,再排除其本身后,可得答案.解答:解:根据题意,﹣2<x﹣1<4可化为﹣1<x<5;则集合S={x∈N|﹣2<x﹣1<4,且x≠1}={x|﹣1<x<5}={0,2,3,4};其子集共24﹣1=16﹣1=15个;故选D.点评:本题考查集合的元素数目与子集数目的关系,若一个集合有n个元素,则其由2n个子集,但其中包括本身与?.ks5u3.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于(
)A. B. C. D.1参考答案:A4.双曲线的焦点为,且经过点,则其标准方程为
参考答案:B略5.若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是()A.2cm2 B.cm3 C.3cm3 D.3cm3参考答案:B【考点】由三视图求面积、体积.【分析】由几何体的三视图得到原几何体的底面积与高,进而得到该几何体的体积.【解答】解:由几何体的三视图可知,该几何体为底面是直角梯形,高为的四棱锥,其中直角梯形两底长分别为1和2,高是2.故这个几何体的体积是×[(1+2)×2]×=(cm3).故选:B.6.读程序,对甲乙两程序和输出结果判断正确的是()A.程序不同,结果不同 B.程序相同,结果不同C.程序不同,结果相同 D.程序相同,结果相同参考答案:C【考点】程序框图.【专题】计算题;阅读型;转化思想;试验法;算法和程序框图.【分析】程序甲是WHILEWEND语句,只要变量i≤100成立,求和运算就要执行下去,直到i>100时终止运算并输出求出的和S;而程序乙是DOLOOPUNTIL语句,只要变量i≥1成立,求和运算就要执行下去,直到i<1时终止运算并输出求出的和S,由此可得两程序结构不同,但输出的S相同,可得本题答案.【解答】解:程序甲是计数变量i从1开始逐步递增直到i=100时终止,变量S从1开始,这个程序计算的是:1×4×7×…×100;程序乙计数变量i从100开始逐步递减到i=2时终止,变量S从100开始,这个程序计算的是100×97×94×…×1.但这两个程序是不同的.两种程序的输出结果相同.故选:C.【点评】本题给出两个伪代码语段,要我们比较它们的异同,着重考查了循环结构的理解和伪代码程序的逻辑处理等知识,属于基础题.7.已知定义在R上的函数f(x)满足,则(
)A.2 B.4 C.8 D.16参考答案:C【分析】令可求得;令可求得;令,可验证出为奇函数,通过可求得结果.【详解】由可知:令可得:,解得:令得:令,则:,即令,则为奇函数
即
本题正确选项:【点睛】本题考查根据函数奇偶性求解函数值的问题,关键是能够通过赋值的方式求得特殊值,并构造函数求得所构造函数的奇偶性.8.定积分cosxdx=()A.﹣1 B.0 C.1 D.π参考答案:B【考点】67:定积分.【分析】根据微积分基本定理,计算即可【解答】解:cosxdx=sinx=sinπ﹣sin0=0﹣0=0故选:B9.已知是定义在上的偶函数,且,若在上单调递减,则在上是(
)A.增函数
B.减函数
C.先增后减的函数
D.先减后增的函数参考答案:D10.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆 B.椭圆 C.一条直线 D.两条平行直线参考答案:B【考点】椭圆的定义;平面与圆柱面的截线.【分析】根据题意,因为三角形面积为定值,从而可得P到直线AB的距离为定值,分析可得,点P的轨迹为一以AB为轴线的圆柱面,与平面α的交线,分析轴线与平面的性质,可得答案.【解答】解:本题其实就是一个平面斜截一个圆柱表面的问题,因为三角形面积为定值,以AB为底,则底边长一定,从而可得P到直线AB的距离为定值,分析可得,点P在以AB为轴线的圆柱面与平面α的交线上,且α与圆柱的轴线斜交,由平面与圆柱面的截面的性质判断,可得P的轨迹为椭圆;故选:B.二、填空题:本大题共7小题,每小题4分,共28分11.如图,在三棱锥P﹣ABC中,PA=PB=PC=BC,且∠BAC=,则PA与底面ABC所成角为.参考答案:【考点】MI:直线与平面所成的角.【分析】P在底面的射影E是△ABC的外心,故E是BC的中点,三角形PAE中,求出三边边长、tan∠PAE的值,即可得到PA与底面ABC所成角的大小.【解答】解:∵PA=PB=PC,∴P在底面的射影E是△ABC的外心,又故E是BC的中点,所以PA与底面ABC所成角为∠PAE,等边三角形PBC中,PE=,直角三角形ABC中,AE=BC=,又PA=1,∴三角形PAE中,tan∠PAE==∴∠PAE=,则PA与底面ABC所成角为.12.已知点F1、F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A、B两点,若△ABF2为正三角形,则椭圆的离心率是_________.
参考答案:13.一组数据xi(1≤i≤8)从小到大的茎叶图为:4|01334
678,在如图所示的流程图中是这8个数据的平均数,则输出的s2的值为________.参考答案:714.参考答案:15.不等式对一切都成立.则k的取值范围_______.参考答案:【分析】根据题意结合二次函数的图像进行分析即可得到答案。【详解】令,对称轴为,开口向上,,大致图像如下图:所以要使不等式对一切都成立,则:(1)或(2);当时显然不满足条件舍去;解(1)得:无解,解(2)得:,所以的取值范围【点睛】本题考查二次函数的取值范围问题,结合图像进行分析是解题的关键,属于中档题。16.若命题“”是假命题,则实数的取值范围是
.参考答案:
17.若x,y满足不等式,则的取值范围是________.参考答案:【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】解:由,满足不等式作出可行域如图,
令,目标函数经过A点时取的最小值,
联立,解得时得最小值,.
目标函数经过B点时取的最大值,
联立,解得,此时取得最大值,.
所以,z=2x+y的取值范围是.
故答案为:【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是基础题.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=+lnx﹣3有两个零点x1,x2(x1<x2)(Ⅰ)求证:0<a<e2(Ⅱ)求证:x1+x2>2a.参考答案:【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围求出函数的单调区间,从而求出函数的最小值,求出a的范围即可;(Ⅱ)问题转化为证明f(x2)>f(2a﹣x1),设函数g(x)=f(x)﹣f(2a﹣x),根据函数的单调性证明即可.【解答】证明:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)=,①a≤0时,f′(x)≥0,∴f(x)在区间(0,+∞)上是增函数,不可能有2个零点;②a>0时,在区间(0,a)上,f′(x)<0,在区间(a,+∞)上,f′(x)>0,∴f(x)在区间(0,a)递减,在区间(a,+∞)递增;f(x)的最小值是f(a)=lna﹣2,由题意得:有f(a)<0,则0<a<e2;(Ⅱ)要证x1+x2>2a,只要证x2>2a﹣x1,易知x2>a,2a﹣x1>a,而f(x)在区间(a,+∞)递增,∴只要证明f(x2)>f(2a﹣x1),即证f(x2)>f(2a﹣x1),设函数g(x)=f(x)﹣f(2a﹣x),则g(a)=0,且区间(0,a)上,g′(x)=f′(x)+f′(2a﹣x)=<0,即g(x)在(0,a)递减,∴g(x1)>g(a)=0,而g(x1)=f(x1)﹣f(2a﹣x1)>0,∴f(x2)>f(2a﹣x1)成立,∴x1+x2>2a.19.已知a、b、c,且,求证:
参考答案:解:……3分同理:………………6分
ks*5*u当且仅当……12分略20.(本小题满分10分)设复数,若,求实数m,n的值。参考答案:21.(本小题满分12分)
已知点(0,1),(3+,0),(3-,0)在圆C上.(1)求圆C的方程;(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.参考答案:(1)由题意可设圆C的圆心为(3,t),则有32+(t-1)2=()2+t2,解得t=1.则圆C的圆心为(3,1),半径长为=3.……4分所以圆C的方程为(x-3)2+(y-1)2=9(2)由消去y,得2x2+(2a-8)x+a2-2a+1=0,此时判别式Δ=56-16a-4a2.设A(x1,y1),B(x2,y2),则有
…………………9分由于OA⊥OB,可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以2x1x2+a(x1+x2)+a2=0②由①②得a=-1,满足Δ>0,故a=-1.………………12分22.已知数列{an}满足:Sn=1-an(n∈N*),其中Sn为数列{an}的前n项和.(1)求{an}的通项公式;(2)若数列{bn}满足:bn=
(n∈N*),求{bn}的前n项和公式Tn.参考答案:解:(1)∵Sn=1-an
①
∴Sn+1=1-an+1,②②-①得,an+1=-an+1+an,∴an+1=an(n∈N*).
4分又n=1时,a1=1-a1,∴a1=∴an
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度车棚租赁与安全检查合同
- 2024年度货运代理服务合同(含货物保险与责任界定)
- 2024年度甲乙双方关于共同推广产品的合作协议
- 大连单位食堂2024年度承包合同经营范围约定
- 大蒜购销及品牌授权合同(04版)
- 别墅区2024年度物业管理服务合同
- 二零二四年度水利工程边坡防护设计合同
- 2024年度醇基燃料品牌授权合同
- 二零二四年度商品委托销售合同
- 二零二四年体育场馆卫生间设施安装及维护合同
- GB/T 7757-2009硫化橡胶或热塑性橡胶压缩应力应变性能的测定
- GB/T 26672-2011道路车辆带调节器的交流发电机试验方法
- GB/T 13075-2016钢质焊接气瓶定期检验与评定
- 四川大学法学院本科生国际经济法课件
- 铸牢中华民族共同体意识学习PPT
- 做一个有温度护士课件
- 药物经济学第六章不确定性分析课件
- 眼科器械的机械清洗课件
- 医疗机构临床实验室生物安全课件
- 北师大版八年级上册一次函数教材分析课件
- 指数函数及其性质 一等奖-精讲版课件
评论
0/150
提交评论