吉林省长春市农安县合隆中学高二数学理期末试题含解析_第1页
吉林省长春市农安县合隆中学高二数学理期末试题含解析_第2页
吉林省长春市农安县合隆中学高二数学理期末试题含解析_第3页
吉林省长春市农安县合隆中学高二数学理期末试题含解析_第4页
吉林省长春市农安县合隆中学高二数学理期末试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市农安县合隆中学高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.阅读如图所示的程序框图,运行相应的程序,输出的结果是()

A.3

B.11C.38

D.123参考答案:B2.如果执行右边的程序框图,那么输出的等于(

)A.2450

B.2500

C.2550

D.2652参考答案:C略3.已知a,b为非零实数,且a>b,则下列不等式成立的是()A.a2>b2 B. C.|a|>|b| D.2a>2b参考答案:D【考点】不等关系与不等式.【分析】由不等式的相关性质,对四个选项逐一判断,由于a,b为非零实数,故可利用特例进行讨论得出正确选项【解答】解:A选项不正确,当a=1,b=﹣2时,不等式就不成立;B选项不正确,因为a=1,b=﹣2时,不等式就不成立;C选项不正确,因为a=1,b=﹣2时,不等式就不成立;D选项正确,因为y=2x是一个增函数,故当a>b时一定有2a>2b,故选D.4.对于三次函数,给出定义:设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数,则=(

)A.1

B.2

C.2013

D.2014

参考答案:C5.下列命题中正确的是

(

)

A.一直线与一平面平行,这个平面内有无数条直线与它平行.

B.平行于同一直线的两个平面平行.

C.与两相交平面的交线平行的直线必平行于这两个相交平面.

D.两条平行直线中的一条与一个平面平行,则另一条也与该平面平行.

参考答案:A6.若方程表示一条直线,则实数满足(

)A.

B.

C.

D.,,参考答案:C

解析:不能同时为7.已知命题p:?x∈R,sinx>1,则()A.?p:?x∈R,sinx≤1 B.?p:?x∈R,sinx≤1C.?p:?x∈R,sinx≤1 D.?p:?x∈R,sinx>1参考答案:C【考点】命题的否定.【分析】原命题是特称命题,其否定为全称命题,将“存在”改为“任意的”,“>“改为“≤”即可得答案.【解答】解:∵命题p:“?x∈R,sinx>1,”是特称命题,∴?p:?x∈R,sinx≤1故选:C8.已知数列{an}中,a1=1,an+1=2nan(n∈N+),则数列{an}的通项公式为()A.an=2n﹣1 B.an=2n C.an= D.an=参考答案:C分析:由an+1=2nan(n∈N+),可得=2n.利用“累乘求积”即可得出.解答:解:∵an+1=2nan(n∈N+),∴=2n.∴an=?…??a1=2n﹣1?2n﹣2?…?21×1=.故选:C.点评:本题考查了“累乘求积”、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.9.曲线y=﹣2x在点(1,﹣)处切线的倾斜角为()A.1 B.45° C.﹣45° D.135°参考答案:D【考点】直线的倾斜角.【分析】本题考查的知识点为导数的几何意义及斜率与倾斜角的转化,要求曲线在点(1,)处切线的倾斜角,我们可以先求出曲线方程的导函数,并计算出点(1,)的斜率即该点的导数值,然后再计算倾斜角.【解答】解:∵∴y'=x﹣2∴y'|x=1=1﹣2=﹣1即曲线在点(1,)处切线的斜率为:﹣1故曲线在点(1,)处切线的倾斜角为:135°故选D10.如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且,G是EF的中点,则GB与平面AGC所成角的正弦值为().A.

B.

C.

D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.变量x、y满足线性约束条件,则使目标函数z=ax+y(a>0)取得最大值的最优解有无数个,则a的值为

.参考答案:2【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,要使目标函数的最优解有无数个,则目标函数和其中一条直线平行,然后根据条件即可求出a的值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax+y(a>0)得y=﹣ax+z,∵a>0,∴目标函数的斜率k=﹣a<0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z和直线2x+y=2平行时,此时目标函数取得最大值时最优解有无数多个,此时﹣a=﹣2,即a=2.故答案为:2.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.12.已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为

.参考答案:12【考点】双曲线的简单性质.【专题】计算题;开放型;圆锥曲线的定义、性质与方程.【分析】利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF周长最小时,该三角形的面积.【解答】解:由题意,设F′是左焦点,则△APF周长=|AF|+|AP|+|PF|=|AF|+|AP|+|PF′|+2≥|AF|+|AF′|+2(A,P,F′三点共线时,取等号),直线AF′的方程为与x2﹣=1联立可得y2+6y﹣96=0,∴P的纵坐标为2,∴△APF周长最小时,该三角形的面积为﹣=12.故答案为:12.【点评】本题考查双曲线的定义,考查三角形面积的计算,确定P的坐标是关键.13.已知0<x<1则x(3-3x)取最大值时x的值为__________.参考答案:略14.已知双曲线﹣=1与﹣=1有相同的离心率,则m=.参考答案:6【考点】双曲线的简单性质.【分析】根据题意,由双曲线离心率公式变形可得e2=1+,对于题目所给的两个双曲线可得:e12=1+=3和e22=1+,两者离心率相等,可得1+=3,解可得m的值,即可得答案.【解答】解:根据题意,对于双曲线﹣=1,其离心率e=,则e2===1+,对于双曲线﹣=1,其离心率为e1,则e12=1+=3,对于双曲线﹣=1,其离心率为e2,则e22=1+,而两个双曲线有相同的离心率,则有1+=3,解可得m=6;故答案为:6.【点评】本题考查双曲线的几何性质,要掌握并灵活运用双曲线离心率的计算公式.15.若圆与圆(a>0)的公共弦的长为,则___________。参考答案:解析:由知的半径为,由图可知解之得16.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如右图,则该组数据的方差为___________.参考答案:17.若内一点满足,则。类比以上推理过程可得如下命题:若四面体内一点满足,则

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在底面是直角梯形的四棱锥S﹣ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求证:面SAB⊥面SBC;(3)求SC与底面ABCD所成角的正切值.参考答案:(1)解:∵底面是直角梯形的四棱锥S﹣ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=.∴四棱锥S﹣ABCD的体积:V====.(2)证明:∵SA⊥面ABCD,BC?面ABCD,∴SA⊥BC,∵AB⊥BC,SA∩AB=A,∴BC⊥面SAB∵BC?面SBC∴面SAB⊥面SBC.(3)解:连接AC,∵SA⊥面ABCD,∴∠SCA就是SC与底面ABCD所成的角.在三角形SCA中,∵SA=1,AC=,∴.…10分考点:直线与平面所成的角;棱柱、棱锥、棱台的体积;平面与平面垂直的判定.专题:综合题.分析:(1)由题设条四棱锥S﹣ABCD的体积:V==,由此能求出结果.(2)由SA⊥面ABCD,知SA⊥BC,由AB⊥BC,BC⊥面SAB,由此能够证明面SAB⊥面SBC.(3)连接AC,知∠SCA就是SC与底面ABCD所成的角.由此能求出SC与底面ABCD所成角的正切值.解答:(1)解:∵底面是直角梯形的四棱锥S﹣ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=.∴四棱锥S﹣ABCD的体积:V====.(2)证明:∵SA⊥面ABCD,BC?面ABCD,∴SA⊥BC,∵AB⊥BC,SA∩AB=A,∴BC⊥面SAB∵BC?面SBC∴面SAB⊥面SBC.(3)解:连接AC,∵SA⊥面ABCD,∴∠SCA就是SC与底面ABCD所成的角.在三角形SCA中,∵SA=1,AC=,∴.…10分点评:本题考查棱锥的体积的求法,面面垂直的证明和直线与平面所成角的正切值的求法.解题时要认真审题,注意合理地进行等价转化19.设函数f(x)=ex﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a的取值范围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f′(x)+x+1>0在x>0时成立转化为k<(x>0)成立,由此问题转化为求g(x)=在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=ex﹣ax﹣2的定义域是R,f′(x)=ex﹣a,若a≤0,则f′(x)=ex﹣a≥0,所以函数f(x)=ex﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=ex﹣a<0;当x∈(lna,+∞)时,f′(x)=ex﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)由于a=1,所以,(x﹣k)f′(x)+x+1=(x﹣k)(ex﹣1)+x+1故当x>0时,(x﹣k)f′(x)+x+1>0等价于k<(x>0)①令g(x)=,则g′(x)=由(I)知,当a=1时,函数h(x)=ex﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=ex﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.20.如图,菱形与正三角形的边长均为2,它们所在平面互相垂直,平面,且.(Ⅰ)求证:平面;(Ⅱ)若,求几何体的体积.参考答案:(Ⅰ)如图,过点作于,连接,.平面平面,平面,平面平面于,平面.又平面,,.四边形为平行四边形,.平面,平面,平面.(Ⅱ)连接,.由题意,得.平面,平面平面于,平面.,平面,平面,平面,同理,由,可证,平面.于,平面,平面.平面平面,到平面的距离等于的长.为四棱锥的高,.21.给定整数,设与直线y=x的一个交点.试证明对于任意正整数m,必存在整数与直线y=x的一个交点.参考答案:证明:因为与的交点为.显然有.若

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论