版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省信阳市分水寥东中学高二数学理下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为(
)A. B.C. D.参考答案:D【考点】椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.2.如图,在长方形OABC内任取一点P(x,y),则点P落在阴影部分的概率为()A. B. C. D.参考答案:A【考点】定积分;几何概型.【分析】根据几何概型的特点,首先利用定积分表示阴影部分的面积,利用面积比求概率.【解答】解:由已知B在y=ax上,所以a=e,得到阴影部分的面积为=(ex﹣x)|+=e﹣,长方形的面积为1×e=e,由几何概型的公式得到;故选A.3.双曲线的实轴长是(
)A.2
B.2
C.4
D.4参考答案:C4.设均为直线,其中在平面的(
)条件充分不必要
必要不充分
充分必要 既不充分也不必要参考答案:C略5.已知点A(2,﹣3)、B(﹣3,﹣2)直线l过点P(1,1),且与线段AB相交,则直线l的斜率k的取值范围是()A.或k≤﹣4 B.或 C. D.参考答案:A【考点】直线的斜率.【分析】画出图形,由题意得所求直线l的斜率k满足k≥kPB或k≤kPA,用直线的斜率公式求出kPB和kPA的值,解不等式求出直线l的斜率k的取值范围.【解答】解:如图所示:由题意得,所求直线l的斜率k满足k≥kPB或k≤kPA,即k≥或k≤4故选:A.6.椭圆的四个顶点为A、B、C、D,若四边形ABCD的内切圆恰好过焦点,则椭圆的离心率为(
)A.
B.
C.
D.参考答案:D略7.抛物线的焦点坐标是(
)A(0,1)
B(0,-1)
C(0,)
D(0,-)参考答案:C略8.方程的解所在的区间为A.(,0)
B.(0,1)
C.(1,2)
D.(2,3)参考答案:C令∵
∴在(1,2)内有零点。9.已知函数的导函数为,且满足关系式,则的值等于(
)A.
B.
C.
D.参考答案:D10.用数学归纳法证明:“”.从“到”左端需增乘的代数式为(
)A. B. C. D.参考答案:B【分析】分别写出当和当时,左端的式子,两式相除即可得出结果.【详解】当时,左端;当时,左端,所以左端增乘的代数式.故选B二、填空题:本大题共7小题,每小题4分,共28分11.设是双曲线的左右焦点,点P在双曲线上,且,则
.参考答案:212.△ABC的内角A,B,C所对的边分别为a,b,c,已知a,b,c是公差为4的等差数列,且△ABC的最大内角为120°,则最大边的长度为________.参考答案:1413.如果AC<0,BC>0,那么直线不通过第_____________象限;参考答案:略14.=x3-12x+8在[-3,3]上的最大值与最小值分别为M,N,则M-N=
.参考答案:32略15.某产品的广告费用x与销售额y的统计数据如下表
根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为
.参考答案:万元略16.若双曲线的渐近线方程为,则双曲线的焦点坐标是_________.参考答案:渐近线方程为,得,且焦点在轴上17.若命题,该命题的否定是_▲_.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.
已知命题:有两个不等的负根,命题:无实数根,若命题与命题有且只有一个为真,求实数的取值范围。参考答案:略19.(本小题满分16分)设等差数列中,。(1)求数列的通项公式;(2)设数列的通项公式为,问:是否存在正整数t,使得()成等差数列?若存在,求出t和m的值;若不存在,请说明理由。参考答案:(1)(2)整理得:
所以
20.如图所示,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD,DA上的点.且满足==,==2.(1)求证:四边形EFGH是梯形;(2)若BD=a.求梯形EFGH的中位线的长.参考答案:【考点】直线与平面平行的性质;平行线分线段成比例定理.【分析】(1)利用比例关系,求出EH∥BD,FG∥BD,EH=,FG=BD,即可证明四边形EFGH是梯形;(2)EH==,FG=BD=a,即可求梯形EFGH的中位线的长.【解答】(1)证明:∵==,==2,∴EH∥BD,FG∥BD,EH=,FG=BD.∴EH∥FG,EH≠FG,∴四边形EFGH是梯形;(2)解:∵BD=a,∴EH==,FG=BD=a,∴梯形EFGH的中位线的长为.21.已知椭圆C的中心在原点O,焦点在x轴上,离心率为,右焦点到右顶点的距离为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)是否存在与椭圆C交于A,B两点的直线l:y=kx+m(k∈R),使得?=0成立?若存在,求出实数m的取值范围,若不存在,请说明理由.参考答案:【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)由题意设出椭圆的标准方程,并得到a,c的关系,联立求得a,c的值,结合隐含条件求得b,则椭圆方程可求;(Ⅱ)联立直线方程和椭圆方程,利用根与系数的关系及判别式求得满足?=0成立的直线l:y=kx+m存在.【解答】解:(Ⅰ)设椭圆C的方程为(a>b>0),半焦距为c.依题意,由右焦点到右顶点的距离为1,得a﹣c=1,解得c=1,a=2.∴b2=a2﹣c2=3.∴椭圆C的标准方程是.(Ⅱ)存在直线l,使得?=0成立.理由如下:由,得(3+4k2)x2+8kmx+4m2﹣12=0.△=(8km)2﹣4(3+4k2)(4m2﹣12)>0,化简得3+4k2>m2.设A(x1,y1),B(x2,y2),则,.若?=0,则x1x2+y1y2=0,即x1x2+(kx1+m)(kx2+m)=0,得,即,化简得,7m2=12+12k2,将代入3+4k2>m2中,得,解得.又由7m2=12+12k2≥12,得,即或.∴实数m的取值范围是:(﹣∞,]∪[,+∞).22.(本小题满分14分)如图所示,、分别为椭圆:的左、右两个焦点,、为两个顶点;已知顶点到、两点的距离之和为4.(1)求椭圆的方程;(2)证明:椭圆上任意一点到右焦点的距离的最小值为1.(3)作的平行线交椭圆于、两点,求弦长的最大值,并求取最大值时的面积.参考答案:解:(1)由已知得,∴椭圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装载机用车合同(2篇)
- 第24课《愚公移山》八年级语文上册精讲同步课堂(统编版)
- 2024年吉林省长春市中考地理真题卷及答案解析
- 16.1《赤壁赋》-高一语文上学期同步备课拓展(统编版必修上册)
- 说课稿课件政治
- 西京学院《现代教育技术》2023-2024学年第一学期期末试卷
- 西京学院《企业级框架基础》2021-2022学年期末试卷
- 社区环境 课件
- 外研版必修一module2-mynewteachers(reading)课件
- 西华师范大学《装饰绘画》2022-2023学年第一学期期末试卷
- 第四单元 和谐与梦想 复习课件-部编版道德与法治九年级上册
- 2023年山东省春季高考财经类专业知识试题
- 公路水运工程建设重大事故隐患清单管理
- 四年级安全教育教案洪水来了巧逃生
- 《农业政策法规》课件
- 通力电梯7种紧急放人程序
- 三石液压消防安全制度
- 邀请函模板完整
- 《教师专业发展》课件
- 培智学校四年级生活语文《四季花开》公开课优质课课课件
- 标准化沟通模板
评论
0/150
提交评论