版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江齐齐哈尔市第八中学2024年高考数学二模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若的展开式中含有常数项,且的最小值为,则()A. B. C. D.2.已知实数满足则的最大值为()A.2 B. C.1 D.03.若为纯虚数,则z=()A. B.6i C. D.204.将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为()A. B. C. D.5.设是定义域为的偶函数,且在单调递增,,则()A. B.C. D.6.已知全集为,集合,则()A. B. C. D.7.已知函数,则下列判断错误的是()A.的最小正周期为 B.的值域为C.的图象关于直线对称 D.的图象关于点对称8.已知复数是纯虚数,其中是实数,则等于()A. B. C. D.9.已知展开式中第三项的二项式系数与第四项的二项式系数相等,,若,则的值为()A.1 B.-1 C.8l D.-8110.把满足条件(1),,(2),,使得的函数称为“D函数”,下列函数是“D函数”的个数为()①②③④⑤A.1个 B.2个 C.3个 D.4个11.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立 B.当时,该命题成立C.当时,该命题不成立 D.当时,该命题成立12.设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若正实数x,y,满足x+2y=5,则x214.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.15.已知双曲线的一条渐近线经过点,则该双曲线的离心率为_______.16.已知向量,,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.18.(12分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.(1)当时,求某个时间段需要检查污染源处理系统的概率;(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.19.(12分)设数列,其前项和,又单调递增的等比数列,,.(Ⅰ)求数列,的通项公式;(Ⅱ)若,求数列的前n项和,并求证:.20.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.21.(12分)已知函数(1)若,求证:(2)若,恒有,求实数的取值范围.22.(10分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.(Ⅰ)写出曲线的极坐标方程,并指出是何种曲线;(Ⅱ)若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1.所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.2、B【解析】
作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.3、C【解析】
根据复数的乘法运算以及纯虚数的概念,可得结果.【详解】∵为纯虚数,∴且得,此时故选:C.【点睛】本题考查复数的概念与运算,属基础题.4、B【解析】
由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.5、C【解析】
根据偶函数的性质,比较即可.【详解】解:显然,所以是定义域为的偶函数,且在单调递增,所以故选:C【点睛】本题考查对数的运算及偶函数的性质,是基础题.6、D【解析】
对于集合,求得函数的定义域,再求得补集;对于集合,解得一元二次不等式,再由交集的定义求解即可.【详解】,,.故选:D【点睛】本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.7、D【解析】
先将函数化为,再由三角函数的性质,逐项判断,即可得出结果.【详解】可得对于A,的最小正周期为,故A正确;对于B,由,可得,故B正确;对于C,正弦函数对称轴可得:解得:,当,,故C正确;对于D,正弦函数对称中心的横坐标为:解得:若图象关于点对称,则解得:,故D错误;故选:D.【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,考查了分析能力和计算能力,属于基础题.8、A【解析】
对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【详解】因为为纯虚数,所以,得所以.故选A项【点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.9、B【解析】
根据二项式系数的性质,可求得,再通过赋值求得以及结果即可.【详解】因为展开式中第三项的二项式系数与第四项的二项式系数相等,故可得,令,故可得,又因为,令,则,解得令,则.故选:B.【点睛】本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.10、B【解析】
满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.【详解】满足(1)(2)的函数是偶函数且值域关于原点对称,①不满足(2);②不满足(1);③不满足(2);④⑤均满足(1)(2).故选:B.【点睛】本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题.11、C【解析】
写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.12、D【解析】
根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.【详解】函数(,)是上的奇函数,则,所以.又的图象关于直线对称可得,,即,,由函数的单调区间知,,即,综上,则,.故选:D【点睛】本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】
分析:将题中的式子进行整理,将x+1当做一个整体,之后应用已知两个正数的整式形式和为定值,求分式形式和的最值的问题的求解方法,即可求得结果.详解:x2-3x+1+2点睛:该题属于应用基本不等式求最值的问题,解决该题的关键是需要对式子进行化简,转化,利用整体思维,最后注意此类问题的求解方法-------相乘,即可得结果.14、【解析】
由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【详解】由题可知,,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:【点睛】本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.15、【解析】
根据双曲线方程,可得渐近线方程,结合题意可表示,再由双曲线a,b,c关系表示,最后结合双曲线离心率公式计算得答案.【详解】因为双曲线为,所以该双曲线的渐近线方程为.又因为其一条渐近线经过点,即,则,由此可得.故答案为:.【点睛】本题考查由双曲线的渐近线构建方程表示系数关系进而求离心率,属于基础题.16、3【解析】
由题意得,,再代入中,计算即可得答案.【详解】由题意可得,,∴,解得,∴.故答案为:.【点睛】本题考查向量模的计算,考查函数与方程思想、转化与化归思想,考查运算求解能力,求解时注意向量数量积公式的运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)元;(2)32家;(3)分布列见解析;【解析】
(1)根据频率分布直方图求出各组频率,再由平均数公式,即可求解;(2)求出的频率即可;(3)中的个数的所有可能取值为,,,求出可能值的概率,得到分布列,由期望公式即可求解.【详解】(1)频率分布直方图销售额的平均值为千元,所以销售额的平均值为元;(2)不低于元的有家(3)销售额在的店铺有家,销售额在的店铺有家.选取两家,设销售额在的有家.则的所有可能取值为,,.,,所以的分布列为数学期望【点睛】本题考查应用频率分布直方图求平均数和频数,考查离散型随机变量的分布列和期望,属于基础题.18、(1);(2)不会超过预算,理由见解析【解析】
(1)求出某个时间段在开启3套系统就被确定需要检查污染源处理系统的概率为,某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为,可得某个时间段需要检查污染源处理系统的概率;(2)设某个时间段环境监测系统的运行费用为元,则的可能取值为900,1500.求得,,求得其分布列和期望,对其求导,研究函数的单调性,可得期望的最大值,从而得出结论.【详解】(1)某个时间段在开启3套系统就被确定需要检查污染源处理系统的概率为,某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为某个时间段需要检查污染源处理系统的概率为.(2)设某个时间段环境监测系统的运行费用为元,则的可能取值为900,1500.,令,则当时,,在上单调递增;当时,,在上单调递减,的最大值为,实施此方案,最高费用为(万元),,故不会超过预算.【点睛】本题考查独立重复事件发生的概率、期望,及运用求导函数研究期望的最值,由根据期望值确定方案,此类题目解决的关键在于将生活中的量转化为数学中和量,属于中档题.19、(1),;(2)详见解析.【解析】
(1)当时,,当时,,当时,也满足,∴,∵等比数列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,显然数列是递增数列,∴,即.)20、(1);(2).【解析】
(1)连接交于点,连接,利用线面平行的性质定理可推导出,然后利用平行线分线段成比例定理可求得的值;(2)取中点,连接、,过点作,则,作于,连接,推导出,,可得出为平面与平面所成的锐二面角,由此计算出、,并证明出平面,可得出直线与平面所成的角为,进而可求得与平面所成角的正弦值.【详解】(1)连接交于点,连接,平面,平面,平面平面,,在梯形中,,则,,,,所以,;(2)取中点,连接、,过点作,则,作于,连接.为的中点,且,,且,所以,四边形为平行四边形,由于,,,,,,,为的中点,所以,,,同理,,,,平面,,,,为面与面所成的锐二面角,,,,,则,,,平面,平面,,,,面,为与底面所成的角,,,.在中,.因此,与平面所成角的正弦值为.【点睛】本题考查利用线面平行的性质求参数,同时也考查了线面角的计算,涉及利用二面角求线段长度,考查推理能力与计算能力,属于中等题.21、(1)见解析;(2)(﹣∞,0]【解析】
(1)利用导数求x<0时,f(x)的极大值为,即证(2)等价于k≤,x>0,令g(x)=,x>0,再求函数g(x)的最小值得解.【详解】(1)∵函数f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 图样印刷行业经营分析报告
- 体操训练凳产品供应链分析
- 船用钢制舱口盖市场发展前景分析及供需格局研究预测报告
- 工作和人员的安排行业市场调研分析报告
- 在线儿童成长教育行业经营分析报告
- 特教发展历程-探究特殊教育之路
- 气动发电机产品供应链分析
- 化妆服务行业经营分析报告
- 农业自动驾驶行业营销策略方案
- 工业空气调节用散热器产品供应链分析
- 高等工程数学知到章节答案智慧树2023年南京理工大学
- 北京市居住区公共服务设施配套指标
- 2023通信原理期中考题及答案
- 银行保险理财沙龙课件
- 科技时代人们的时间(孙宏)
- 2023届温州一模考试试卷
- 第4课 部屋に 机と いすが あります 课件【知识精讲+备课精研+高效课堂】 高中日语新版标准日本语初级上册
- 轨行区手推小平车(梯车)验收记录表
- 工程变更联系单【范本模板】
- 史前动物课件
- 人教版PEP小学英语六年级上册全册教学设计教案
评论
0/150
提交评论