版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市向阳中学2022-2023学年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.双曲线方程为,则它的右焦点坐标为
(
)参考答案:C2.为了解一批数据在各个范围内所占比例的大小,将这批数据分组,落在各个小组的个数叫做(
)A、频数
B、样本容量
C、频率
D、累计频数参考答案:A3.双曲线-=1的两条渐近线互相垂直,那么它的离心率为(
)A.
B.
C.2
D.参考答案:A略4.已知椭圆的标准方程为,则椭圆的焦点坐标为()A.(﹣3,0),(3,0) B.(0,﹣3),(0,3) C.(﹣,0),(,0) D.(0,﹣),(0,)参考答案:B【考点】椭圆的简单性质.【分析】根据题意,由椭圆的标准方程分析可得该椭圆的焦点在y轴上,且a2=10,b2=1,计算可得c的值,进而由焦点坐标公式可得答案.【解答】解:根据题意,椭圆的标准方程为,则其焦点在y轴上,且a2=10,b2=1,则c2=a2﹣b2=9,即c=3,故其焦点的坐标为(0,3),(0,﹣3);故选:B.【点评】本题考查椭圆的标准方程,关键是掌握由标准方程判断焦点位置的方法.5.与终边相同的角可以表示为(
)A. B. C. D.参考答案:C略6.设,则(
)A.
B.
C.
D.参考答案:A7.已知一组数据为1、5、6、2、6,则这组数据的众数、中位数、平均数的大小关系为()A.中位数>平均数>众数 B.众数>中位数>平均数C.众数>平均数>中位数 D.平均数>众数>中位数参考答案:B【考点】众数、中位数、平均数.【专题】计算题;转化思想;定义法;概率与统计.【分析】分别求出这组数据的众数、中位数、平均数,由此能求出结果.【解答】解:一组数据为1、5、6、2、6中,众数为6,平均数==4,从小到大排:1,2,5,6,6,中位数为5,∴众数>中位数>平均数.故选:B.【点评】本题考查一组数据的众数、中位数、平均数的大小关系的判断,是基础题,解题时要认真审题,注意数据的众数、中位数、平均数的计算公式的合理运用.8.在等差数列{an}中,a1=1,公差d=2,则a8等于()A.13 B.14 C.15 D.16参考答案:C【考点】等差数列的通项公式.【分析】利用等差数列的通项公式即可得出.【解答】解:由题意可得:a8=1+2×(8﹣1)=15.故选;C.9.2016法国欧洲杯比赛于6月中旬揭开战幕,随机询问100人是否喜欢足球,得到如下的2×2列联表:
喜欢足球不喜欢足球总计男351550女252550总计6040100参考公式k2=,(其中n=a+b+c+d)临界值表:P(K2≥k0)0.050.0250.010k03.8415.0246.635参照临界值表,下列结论正确的是()A.有95%的把握认为“喜欢足球与性别相关”B.有95%的把握认为“喜欢足球与性别无关”C.在犯错误的概率不超过2.5%的前提下,认为“喜欢足球与性别无关”D.在犯错误的概率不超过2.5%的前提下,认为“喜欢足球与性别有关”参考答案:A【考点】独立性检验的应用.【分析】根据条件求出观测值,同所给的临界值进行比较,根据4.17>3.841,即可得到结论.【解答】解:由题意K2=≈4.17,由于P(x2≥3.841)≈0.05,∴有95%把握认为“喜欢足球与性别相关”.故选:A.10.在平面直角坐标系中,点P的直角坐标为。若以圆点O为极点,轴半轴为极轴建立坐标系,则点P的极坐标可以是(
) A. B. C. D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知直线l过点P(3,6)且与x,y轴的正半轴分别交于A、B两点,O是坐标原点,则当|OA|+|OB|取得最小值时的直线方程是
(用一般式表示)参考答案:x+y﹣6﹣3=0【考点】直线的一般式方程.【分析】由题意可得:直线的斜率k<0,设直线方程为:kx﹣y+6﹣3k=0,可得B(0,6﹣3k),A(3﹣,0),即可得到|OA|+|OB|,进而利用基本不等式求出最值,并且得到k的取值得到直线的方程.【解答】解:由题意可得:设直线的斜率为k,因为直线l与x轴的正半轴,y轴的正半轴分别交于A、B两点,所以得到k<0.则直线l的方程为:y﹣6=k(x﹣3),整理可得:kx﹣y+6﹣3k=0,令x=0,得y=6﹣3k,所以B(0,6﹣3k);令y=0,得到x=3﹣,所以A(3﹣,0),所以|OA|+|OB|=6﹣3k+3﹣=9+(﹣3k)+(﹣),因为k<0,则|OA|+|OB|=9+(﹣3k)+(﹣)≥9+6,当且仅当﹣3k=﹣,即k=﹣时“=”成立,所以直线l的方程为:x+y﹣6﹣3=0,故答案为:x+y﹣6﹣3=0.12.直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,则实数a的值为.参考答案:1考点:直线的一般式方程与直线的平行关系.专题:计算题.分析:利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值.解答:解:直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,∴,解得a=1.故答案为1.点评:本题考查两直线平行的条件,利用一次项系数之比相等,但不等于常数项之比,求得实数a的值.13.一般地,给定平面上有个点,每两点之间有一个距离,最大距离与最小距离的比记为,已知的最小值是,的最小值是,的最小值是.试猜想的最小值是
.
参考答案:略14.不等式的解集为
。参考答案:15.设i为虚数单位,则_____.参考答案:1.解:16.等差数列{an}中,a1=2,公差不为零,且a1,a3,a11恰好是某等比数列的前三项,那么该等比数列的公比的值等于
.参考答案:417.在一个四棱锥的每个顶点处涂上一种颜色、并且使同一条棱上的两端点异色。则恰好用四种颜色将这五个顶点涂上颜色的不同方法种数为(用数字作答)参考答案:48三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的参数方程为(为参数),是曲线上的动点,为线段的中点,设点的轨迹为曲线.(1)求的坐标方程;(2)若射线与曲线异于极点的交点为,与曲线异于极点的交点为,求.参考答案:(1)设,则由条件知,由于点在曲线上,所以,即,从而的参数方程为(为参数),化为普通方程即,将,所以曲线后得到极坐标方程为.(2)曲线的极坐标方程为,当时,代入曲线的极坐标方程,得,即,解得或,所以射线与的交点的极径为,曲线的极坐标方程为.同理可得射线与的交点的极径为.所以.19.(本小题满分12分)
已知函数为大于零的常数。
(1)若函数内单调递增,求a的取值范围;
(2)求函数在区间[1,2]上的最小值。参考答案:解:
…..2分
(1)由已知,得上恒成立, 即上恒成立 又当
…..6分
(2)当时, 在(1,2)上恒成立, 这时在[1,2]上为增函数
当在(1,2)上恒成立,这时在[1,2]上为减函数 当时,令
又
综上,在[1,2]上的最小值为 ①当 ②当时, ③当…..12分20.已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过A点作AD⊥CD于D,交半圆于点E,DE=1(1)证明:AC平分∠BAD;(2)求BC的长.参考答案:【考点】相似三角形的性质.【分析】(1)推导出∠OAC=∠OCA,OC⊥CD,从而AD∥OC,由此能证明AC平分∠BAD.(2)由已知推导出BC=CE,连结CE,推导出△CDE∽△ACD,△ACD∽△ABC,由此能求出BC的长.【解答】证明:(1)∵OA=OC,∴∠OAC=∠OCA,∵CD是圆的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA故∠DAC=∠OAC,即AC平分∠BAD.解:(2)由(1)得:,∴BC=CE,连结CE,则∠DCE=∠DAC=∠OAC,∴△CDE∽△ACD,△ACD∽△ABC∴,故.21.(本小题12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数
的分布列为123450.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.表示经销一件该商品的利润.(1)求事件:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率;(2)求的分布列及期望.参考答案:解:(Ⅰ)由表示事件“购买该商品的3位顾客中至少有1位采用1期付款
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版无人驾驶汽车测试协议
- 二零二四年度LED路灯购销合同协议书3篇
- 二零二五年度餐饮行业营销推广服务合同3篇
- 2024版履约担保公司履约担保管理系统
- 2025年生态小区绿化水资源利用承包合同3篇
- 建筑碗扣支架出租合同(2025版)3篇
- 2024路演合同范本:路演活动应急预案合同3篇
- 二零二五年度环保科技水处理技术与应用合同3篇
- 二零二五版防盗门品牌加盟与区域经营合同3篇
- 2025年度旅游度假村麻石景观设计与施工合同4篇
- 《庖丁解牛》获奖课件(省级公开课一等奖)-完美版PPT
- 化工园区危险品运输车辆停车场建设标准
- 6月大学英语四级真题(CET4)及答案解析
- 气排球竞赛规则
- 电梯维修保养报价书模板
- 危险化学品目录2023
- FZ/T 81024-2022机织披风
- GB/T 33141-2016镁锂合金铸锭
- JJF 1069-2012 法定计量检定机构考核规范(培训讲稿)
- 综合管廊工程施工技术概述课件
- 公积金提取单身声明
评论
0/150
提交评论