版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年上海大学市北附属中学高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设等差数列{an}的前n项和为Sn,若a3=﹣11,a6+a10=﹣2,则当Sn取最小值时,n的值为(
)A.7 B.8 C.9 D.10参考答案:B【考点】等差数列的前n项和.【专题】方程思想;数学模型法;等差数列与等比数列.【分析】利用等差数列的通项公式可得an,令an≥0,解出即可得出.【解答】解:设等差数列{an}的公差为d,∵a3=﹣11,a6+a10=﹣2,∴,解得a1=﹣15,d=2,∴an=﹣15+2(n﹣1)=2n﹣17,令an≥0,解得n≥,则当Sn取最小值时,n=8.故选:B.【点评】本题考查了等差数列的通项公式及其单调性,考查了推理能力与计算能力,属于中档题.2.已知点P(1,1)及圆C:,点M,N在圆C上,若PM⊥PN,则|MN|的取值范围为()A.
B.C.
D.参考答案:A3.若复数是纯虚数,则实数的值为(
)ks5uA.1
B.2
C.1或2
D.参考答案:略4.已知盒中装有3只螺口与2只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为(
)A.
B.
C.
D.参考答案:C5.在正方体ABCD﹣A1B1C1D1中,E是棱D1C1的中点,则异面直线D1B、EC的夹角的余弦值为()A. B. C. D.参考答案:D【考点】异面直线及其所成的角.【分析】如图所示,建立空间直角坐标系.不妨设AB=2.利用=即可得出.【解答】解:如图所示,建立空间直角坐标系.不妨设AB=2.D(0,0,0),B(2,2,0),C(0,2,0),E(0,1,2),D1=(0,0,2).=(﹣2,﹣2,2),=(0,﹣1,2),∴===.∴异面直线D1B、EC的夹角的余弦值为.故选:D.6.若直线Ax+By+C=0(A2+B2≠0)经过第一、二、三象限,则系数A,B,C满足的条件为()A.A,B,C同号 B.AC>0,BC<0 C.AC<0,BC>0 D.AB>0,AC<0参考答案:B【考点】直线的一般式方程.【分析】利用直线斜率、截距的意义即可得出.【解答】解:∵直线Ax+By+C=0(A2+B2≠0)经过第一、二、三象限,∴斜率,在y轴上的截距>0,∴AC>0,BC<0.故选:B.【点评】本题考查了直线斜率、截距的意义,属于基础题.7.已知集合,,,则A.
B.C.
D.参考答案:C8.抛物线y2=﹣8x的焦点坐标是()A.(2,0) B.(﹣2,0) C.(4,0) D.(﹣4,0)参考答案:B【考点】抛物线的简单性质.【分析】数形结合,注意抛物线方程中P的几何意义.【解答】解:抛物线y2=﹣8x开口向右,焦点在x轴的负半轴上,P=4,∴=2,故焦点坐标(﹣2,0),答案选B.9.若关于x的一元二次方程x2+ax﹣2=0有两个不相等的实根x1,x2,且x1<﹣1,x2>1,则实数a的取值范围是()A.a<﹣1 B.a>1 C.﹣1<a<1 D.a>2或a<﹣2参考答案:C【考点】一元二次方程的根的分布与系数的关系.【分析】由题意设f(x)=x2+ax﹣2,由条件、函数与方程的关系、一元二次函数的图象列出不等式,求出实数a的取值范围.【解答】解:由题意设f(x)=x2+ax﹣2,∵方程x2+ax﹣2=0有两个不相等的实根x1,x2,且x1<﹣1,x2>1,∴,则,解得﹣1<a<1,故选:C.10.设集合,,那么等于
(
)A.
B.
C.
D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.若复数z满足,其中i是虚数单位,则z的实部为________.参考答案:2分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.12.某鱼贩一次贩运草鱼、青苗、鲢鱼、鲤鱼及鲫鱼分别为80条、20条、40条、40条、20条,现从中抽取一个容量为20的样本进行质量检测,若采用分层抽样的方法抽取样本,则抽取的青鱼与鲤鱼共有________条.参考答案:613.设O为坐标原点,抛物线y2=4x的焦点为F,P为抛物线上一点.若|PF|=3,则△OPF的面积为.参考答案:【考点】抛物线的简单性质.【分析】根据抛物线方程求得抛物线的准线方程与焦点坐标,利用|PF|=3求得P点的横坐标,代入抛物线方程求得纵坐标,代入三角形面积公式计算.【解答】解:由抛物线方程得:抛物线的准线方程为:x=﹣1,焦点F(1,0),又P为C上一点,|PF|=3,∴xP=2,代入抛物线方程得:|yP|=2,∴S△POF=×|OF|×2=.故答案为:.【点评】本题考查了抛物线的定义及几何性质,熟练掌握抛物线上的点所迷住的条件是解题的关键.14.如图,在四面体ABCD中,E,F分别为AB,CD的中点,过EF任作一个平面分别与直线BC,AD相交于点G,H,则下列结论正确的是___________.①对于任意的平面,都有直线GF,EH,BD相交于同一点;②存在一个平面,使得点G在线段BC上,点H在线段AD的延长线上;③对于任意的平面,都有;④对于任意的平面,当G,H在线段BC,AD上时,几何体AC-EGFH的体积是一个定值.参考答案:③④【分析】当分别为中点时,可知三线互相平行,排除①;若三线相交,交点必在上,可排除②;取中点,利用线面平行判定定理可证得平面,平面,再结合为中点可得到平面的距离相等,进一步得到到直线的距离相等,从而证得面积相等,③正确;首先通过临界状态与重合,与重合时,求得所求体积为四面体体积一半;当不位于临界状态时,根据③的结论可证得,从而可知所求体积为四面体体积一半,进而可知为定值,④正确.【详解】当分别为中点时,,则①错误若三线相交,则交点不存在在线段上,在线段延长线上的情况,则②错误取中点,如图所示:分别为中点
又平面,平面
平面同理可得:平面到平面的距离相等;到平面的距离相等又为中点
到平面的距离相等到平面的距离相等连接交于,则为中点
到距离相等,则③正确当与重合,与重合时,此时几何体体积为三棱锥的体积为中点
三棱锥的体积为四面体体积的一半当如图所示时,由③可知又为中点
到截面的距离相等
综上所述,几何体的体积为四面体体积的一半,为定值,则④正确本题正确结果:③④【点睛】本题考查立体几何中的截面问题,涉及到几何体体积的求解、点到面的距离、直线交点问题等知识;要求学生对于空间中的直线、平面位置关系等知识有较好的理解,对学生的空间想象能力和逻辑推理能力有较高的要求,属于难题.
15.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,现采取分层抽样的方法从男生中任意抽取25人,那么应该在女生中任意抽取
人.参考答案:略16.已知下列命题:①命题“”的否定是“”;②已知为两个命题,若为假命题,则为真命题;③“”是“”的充分不必要条件;④“若则且”的逆否命题为真命题.其中真命题的序号是__________.(写出所有满足题意的序号)参考答案:②【分析】①写出命题“”的否定,即可判定正误;②由为假命题,得到命题都是假命题,由此可判断结论正确;③由时,不成立,反之成立,由此可判断得到结论;④举例说明原命题是假命题,得出它的逆否命题也为假命题.【详解】对于①中,命题“”的否定为“”,所以不正确;对于②中,命题满足为假命题,得到命题都是假命题,所以都是真命题,所以为真命题,所以是正确的;对于③中,当时,则不一定成立,当时,则成立,所以是成立的必要不充分条件,所以不正确;对于④中,“若则且”是假命题,如时,所以它的逆否命题也是假命题,所以是错误的;故真命题的序号是②.【点睛】本题主要考查了命题的否定,复合命题的真假判定,充分与必要条件的判断问题,同时考查了四种命题之间的关系的应用,试题有一定的综合性,属于中档试题,着重考查了推理与论证能力.17.有下列五个命题:①平面内,到一定点的距离等于到一定直线距离的点的集合是抛物线;②平面内,定点F1、F2,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是椭圆;③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件;④“若﹣3<m<5,则方程+=1是椭圆”.⑤已知向量,,是空间的一个基底,则向量+,﹣,也是空间的一个基底.其中真命题的序号是.参考答案:③⑤【考点】命题的真假判断与应用.【分析】由抛物线的定义,可判断①;由椭圆的定义,可判断②;由三角形内角和定理及充分必要条件定义,即可判断③;由椭圆的标准方程,即可判断④;由空间向量的基底概念即可判断⑤.【解答】解:①平面内,到一定点的距离等于到一定直线(定点不在定直线上)距离的点的集合是抛物线,若定点在定直线上,则动点的集合是过定点垂直于定直线的一条直线,故①错;②平面内,定点F1、F2,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是线段F1F2,若|MF1|+|MF2|>|F1F2|,则点的轨迹是椭圆,故②错;③在△ABC中,∠A,∠B,∠C三个角成等差数列,则2∠B=∠A+∠C=180°﹣∠B,∠B=60°,若∠B=60°,则2∠B=∠A+∠C=120°,即∠B﹣∠A=∠C﹣∠A,即∠A,∠B,∠C三个角成等差数列,故③正确;④若﹣3<m<5,则方程+=1,m+3>0,5﹣m>0,若m=1,则x2+y2=4表示圆,若m≠1,则表示椭圆,故④错;⑤已知向量,,是空间的一个基底,即它们非零向量且不共线,则向量+,﹣,也是空间的一个基底,故⑤正确.故答案为:③⑤【点评】本题主要考查圆锥曲线的定义和方程,注意定义的隐含条件,同时考查等差数列的性质和三角形的内角和定理,以及空间向量的基底,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=x+alnx在x=1处的切线l与直线x+2y=0垂直,函数g(x)=f(x)+x2﹣bx.(1)求实数a的值;(2)若函数g(x)存在单调递减区间,求实数b的取值范围;(3)设x1,x2(x1>x2)是函数g(x)的两个极值点,若b≥,求g(x1)﹣g(x2)的最大值.参考答案:考点:导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)由,利用导数的几何意义能求出实数a的值.(2))由已知得=,x>0,由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,由此能求出实数b的取值范围.(3)由=,x>0,由题意知g′(x)<0在(0,+∞)上有解,x>0,设μ(x)=x2﹣(b﹣1)x+1,由此利用构造成法和导数性质能求出g(x1)﹣g(x2)的最大值.解答: 解:(1)∵f(x)=x+alnx,∴,∵f(x)在x=1处的切线l与直线x+2y=0垂直,∴k=f′(x)|x=1=1+a=2,解得a=1.(2)∵g(x)=lnx+﹣(b﹣1)x,∴=,x>0,由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,∵定义域x>0,∴x+≥2,x+<b﹣1有解,只需要x+的最小值小于b﹣1,∴2<b﹣1,解得实数b的取值范围是{b|b>3}.(3)∵g(x)=lnx+﹣(b﹣1)x,∴=,x>0,由题意知g′(x)<0在(0,+∞)上有解,∵x>0,设μ(x)=x2﹣(b﹣1)x+1,则μ(0)=[ln(x1+﹣(b﹣1)x1]﹣[lnx2+﹣(b﹣1)x2]=ln+===,∵x1>x2>0,∴设t=,t>1,令h(t)=lnt﹣(t﹣),t>1,则,∴h(t)在(1,+∞)上单调递减,又∵b≥,∴(b﹣1)2,∵t>1,∴由4t2﹣17t+4=(4t﹣1)(t﹣4)≥0得t≥4,∴h(t)≤h(4)=ln4﹣(4﹣)=2ln2﹣,故g(x1)﹣g(x2)的最大值为2ln2﹣.点评:本题考查实数值的求法,考查函数的最大值的求法,解题时要认真审题,注意导数性质的合理运用.19.已知函数(其中),且曲线在点处的切线垂直于直线.(1)求a的值及此时的切线方程;(2)求函数的单调区间与极值.参考答案:(1)a=,;(2)减区间为(0,5),增区间为(5,+∞);极小值为,无极大值..【分析】(1)先求导函数,根据切线与直线垂直可得切线的斜率为k=-2.由导函数的意义代入即可求得a的值;代入函数后可求得,进而利用点斜式可求得切线方程。(2)将a代入导函数中,令,结合定义域求得x的值;列出表格,根据表格即可判断单调区间和极值。【详解】(1)由于,所以,由于在点处的切
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版无人驾驶汽车测试协议
- 二零二四年度LED路灯购销合同协议书3篇
- 二零二五年度餐饮行业营销推广服务合同3篇
- 2024版履约担保公司履约担保管理系统
- 2025年生态小区绿化水资源利用承包合同3篇
- 建筑碗扣支架出租合同(2025版)3篇
- 2024路演合同范本:路演活动应急预案合同3篇
- 二零二五年度环保科技水处理技术与应用合同3篇
- 二零二五版防盗门品牌加盟与区域经营合同3篇
- 2025年度旅游度假村麻石景观设计与施工合同4篇
- 《庖丁解牛》获奖课件(省级公开课一等奖)-完美版PPT
- 化工园区危险品运输车辆停车场建设标准
- 6月大学英语四级真题(CET4)及答案解析
- 气排球竞赛规则
- 电梯维修保养报价书模板
- 危险化学品目录2023
- FZ/T 81024-2022机织披风
- GB/T 33141-2016镁锂合金铸锭
- JJF 1069-2012 法定计量检定机构考核规范(培训讲稿)
- 综合管廊工程施工技术概述课件
- 公积金提取单身声明
评论
0/150
提交评论