版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省岳阳市市君山区广兴洲镇第三中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若实数x,y满足,则点P(x,y)不可能落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:D【考点】二元一次不等式(组)与平面区域.【分析】作出如图所示的可行域,由图象可知,则点P(x,y)不可能落在第四象限【解答】解:实数x,y满足,作出如图所示的可行域,由图象可知,则点P(x,y)不可能落在第四象限,故选:D【点评】本题考查了线性规划中的可行域问题,属于基础题.2.已知等差数列的前13的和为39,则a6+a7+a8=()A.6 B.12 C.18 D.9参考答案:D【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】由求和公式和性质可得a7的值,而所求等于3a7,代入计算可得.【解答】解:由题意可得等差数列的前13的和S13===39解之可得a7=3,又a6+a8=2a7故a6+a7+a8=3a7=9故选D【点评】本题考查等差数列的性质和求和公式,划归为a7是解决问题的关键,属基础题.3.复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:B略4.在5张扑克牌中有3张“红心”和2张“方块”,如果不放回地依次抽取2张牌,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为A. B. C. D.参考答案:D【分析】因为是不放回抽样,故在第一次抽到“红心”时,剩下的4张扑克中有2张“红心”和2张“方块”,根据随机事件的概率计算公式,即可计算第二次抽到“红心”的概率。【详解】因为是不放回抽样,故在第一次抽到“红心”的条件下,剩下的4张扑克中有2张“红心”和2张“方块”,第二次抽取时,所有的基本事件有4个,符合“抽到红心”的基本事件有2个,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为;故答案选D【点睛】本题给出无放回抽样模型,着重考查抽样方法的理解和随机事件的概率等知识,属于基础题。5.甲射击命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是.现在三人同时射击目标,则目标被击中的概率为()A. B. C. D.参考答案:A设甲命中目标为事件A,乙命中目标为事件B,丙命中目标为事件C,则目标被击中的事件可以表示为A+B+C,即击中目标表示事件A、B、C中至少有一个发生.∴P()=P()·P()·P()=[1-P(A)]·[1-P(B)]·[1-P(C)],故目标被击中的概率为1-P()=1-=.6.设首项为,公比为的等比数列的前项和为,则(
) A. B. C. D.参考答案:D略7.若点P(m,3)到直线4x﹣3y+1=0的距离为5,且点P在不等式2x+y<3表示的平面区域内,则m=()A. B. C. D.或参考答案:B【考点】二元一次不等式(组)与平面区域.【专题】计算题;不等式的解法及应用.【分析】利用点到直线的距离公式列出关系式,把已知距离代入求出m的值,根据点P在不等式2x+y<3表示的平面区域内判断即可.【解答】解:∵点P(m,3)到直线4x﹣3y+1=0的距离为5,∴=5,即|4m﹣8|=25,解得:m=﹣或m=,∵点P在不等式2x+y<3表示的平面区域内,∴m=不合题意舍去,则m=﹣,故选:B.【点评】此题考查了二元一次不等式(组)与平面区域,利用了数形结合的思想,画出相应的图形是解本题的关键.8.若抛物线的焦点与双曲线的右焦点重合,则的值为(
)A.
B.
C.
D.参考答案:D9.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为()A. B. C. D.参考答案:D【考点】直线与平面所成的角.【分析】由题意,由于图形中已经出现了两两垂直的三条直线所以可以利用空间向量的方法求解直线与平面所成的夹角.【解答】解:以D点为坐标原点,以DA、DC、DD1所在的直线为x轴、y轴、z轴,建立空间直角坐标系(图略),则A(2,0,0),B(2,2,0),C(0,2,0),C1(0,2,1)∴=(﹣2,0,1),=(﹣2,2,0),且为平面BB1D1D的一个法向量.∴cos<,>═=.∴BC1与平面BB1D1D所成角的正弦值为故答案为D.【点评】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系这一利用向量方法解决了抽象的立体几何问题.10.下面给出了关于复数的三种类比推理:①复数的乘法运算法则可以类比多项式的乘法运算法则;②由向量的性质可以类比复数的性质;③由向量加法的几何意义可以类比得到复数加法的几何意义.其中类比错误的是(
)A.①③
B.①②
C.②
D.③
参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.定积分=
参考答案:略12.对不同的且,函数必过一个定点A,则点A的坐标是_____.参考答案:(2,4)【分析】根据指数函数的图象恒过定点(0,1),求出函数f(x)必过的定点坐标.【详解】根据指数函数的图象恒过定点(0,1),令4﹣2x=0,x=2,∴f(2)=+3=4,∴点A的坐标是(2,4).故答案为:(2,4).【点睛】本题考查了指数函数恒过定点的应用问题,属于基础题.13.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数an与所搭三角形的个数n之间的关系式可以是________.参考答案:an=2n+114.已知,,,则的最小值是____________.参考答案:4略15.阅读如图所示的流程图,运行相应的程序,输出的结果是________.
参考答案:816.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=10,P为C的准线上一点,则△ABP的面积为.参考答案:25【考点】抛物线的简单性质.【分析】根据抛物线的解析式y2=2px(p>0),写出抛物线的焦点、对称轴以及准线,然后根据通径|AB|=2p,求出p,△ABP的面积是|AB|与DP乘积一半.【解答】解:由于抛物线的解析式为y2=2px(p>0),则焦点为F(,0),对称轴为x轴,准线为x=﹣,∵直线l经过抛物线的焦点,A、B是l与C的交点,又∵AB⊥x轴∴|AB|=2p=10∴p=5又∵点P在准线上∴DP=+|﹣|=p=5∴S△ABP=DP?AB=×5×10=25故答案为25.【点评】本题主要考查抛物线焦点、对称轴、准线以及焦点弦的特点;关于直线和圆锥曲线的关系问题一般采取数形结合法.17.已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=4,则|BF|=______.参考答案:
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)某几何体的三视图如下,其中俯视图的内外均为正方形,边长分别为和,几何体的高为,求此几何体的表面积和体积.参考答案:19.(本小题满分12分)某种产品的广告费用支出x(万元)与销售额y(万元)x24568y3040605070之间有如下的对应数据:(1)画出散点图;(2)求回归直线方程;(3)据此估计广告费用为9万元时,销售收入y的值.注:①参考公式:线性回归方程系数公式;②参考数据:,,.参考答案:解:(1)作出散点图如下图所示:
……3分(2),
……4分,
……5分已知,.
……6分由公式,可求得,
……8分,
……9分因此回归直线方程为;
……10分(3)x=9时,预报y的值为(万元).
……12分
20.已知函数(1)若求证:在(1,+∞)上是增函数;(2)求f(x)在x∈[1,e]上的最小值.参考答案:略21.已知等差数列的公差,前项和为.(Ⅰ)若成等比数列,求;(Ⅱ)若,求的取值范围.
参考答案:18.解:(Ⅰ)因为数列的公差,且成等比数列,
所以,即,解得或.……………6分
(Ⅱ)因为数列的公差,且,
所以;即,解得.………………12略22.(14分)已知函数f(x)=aex和g(x)=lnx﹣lna的图象与坐标轴的交点分别是点A,B,且以点A,B为切点的切线互相平行.(Ⅰ)求实数a的值;(Ⅱ)若函数,求函数F(x)的极值;(Ⅲ)若存在x使不等式成立,求实m的取值范围.参考答案:(I)1;(II)函数F(x)极小值是F(1)=1,函数F(x)无极大值;(III)(﹣∞,0).(Ⅰ),(x>0).函数y=f(x)的图象与坐标轴的交点为(0,a),函数y=g(x)的图象与坐标轴的交点为(a,0),由题意得,又∵a>0,∴a=1;(Ⅱ)∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版无人驾驶汽车测试协议
- 二零二四年度LED路灯购销合同协议书3篇
- 二零二五年度餐饮行业营销推广服务合同3篇
- 2024版履约担保公司履约担保管理系统
- 2025年生态小区绿化水资源利用承包合同3篇
- 建筑碗扣支架出租合同(2025版)3篇
- 2024路演合同范本:路演活动应急预案合同3篇
- 二零二五年度环保科技水处理技术与应用合同3篇
- 二零二五版防盗门品牌加盟与区域经营合同3篇
- 2025年度旅游度假村麻石景观设计与施工合同4篇
- 《庖丁解牛》获奖课件(省级公开课一等奖)-完美版PPT
- 化工园区危险品运输车辆停车场建设标准
- 6月大学英语四级真题(CET4)及答案解析
- 气排球竞赛规则
- 电梯维修保养报价书模板
- 危险化学品目录2023
- FZ/T 81024-2022机织披风
- GB/T 33141-2016镁锂合金铸锭
- JJF 1069-2012 法定计量检定机构考核规范(培训讲稿)
- 综合管廊工程施工技术概述课件
- 公积金提取单身声明
评论
0/150
提交评论