河南省周口市项城第二实验中学高二数学理月考试题含解析_第1页
河南省周口市项城第二实验中学高二数学理月考试题含解析_第2页
河南省周口市项城第二实验中学高二数学理月考试题含解析_第3页
河南省周口市项城第二实验中学高二数学理月考试题含解析_第4页
河南省周口市项城第二实验中学高二数学理月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省周口市项城第二实验中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.有下列命题:①有两个面平行,其余各面都是四边形的几何体叫棱柱;②有两个面平行,其余各面都是平行四边形的几何体叫棱柱;③有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱;④用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。⑤有一个面是多边形,其余各面都是三角形的几何体是棱锥。其中正确的命题的个数为

)A.

B.

C.

D.参考答案:B2.下列函数中,满足f(x2)=2的是(

)A.f(x)=lnx B.f(x)=|x+1| C.f(x)=x3 D.f(x)=ex参考答案:C【考点】函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】利用指数的运算性质及对数的运算性质,分别求出f(x2)与2,比照后,可得答案.【解答】解:若f(x)=lnx,则f(x2)=lnx2=2lnx,2=(lnx)2,不满足f(x2)=2,若f(x)=|x+1|,则f(x2)=|x2+1|,2=|x+1|2=x2+2x+1,不满足f(x2)=2,若f(x)=x3,则f(x2)=(x2)3=x6,2=(x3)2=x6,满足f(x2)=2,若f(x)=ex,则f(x2)=,2=(ex)2=e2x,不满足f(x2)=2,故选C【点评】本题考查的知识点函数解析式的求解,熟练掌握指数的运算性质及对数的运算性质,分别求出f(x2)与2,是解答的关键.3.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原来的图形是(

). A. B. C. D.参考答案:A作出该直观图的原图形,因为直观图中的线段轴,所以在原图形中对应的线段平行于轴且长度不变,点和在原图形中对应的点和的纵坐标是的倍,则,所以.故选.4.下面几种推理过程是演绎推理的是()A.两条直线平行,同旁内角互补,如果和是两条平行直线的同旁内角,则.B.由平面三角形的性质,推测空间四面体的性质.C.三角形内角和是,四边形内角和是,五边形内角和是,由此得凸多边形内角和是.D.在数列中,,,由此归纳出的通项公式.参考答案:A5.=A.0

B.2

C.

D.参考答案:A略6.观察下列各式:,,,,,…,则()A.15 B.18 C.29 D.47参考答案:C【分析】通过对等式的左右两边观察,找出其数的规律.【详解】,,,,,,通过观察发现,从第三项起,等式右边的常数分别为其前两项等式右边的常数的和.,.故选C.【点睛】本题考查观察能力,属于基础题.7.在等差数列{an}中,已知a4+a5=12,那么它的前8项和S8等于(

)A.12 B.24 C.36 D.48参考答案:D考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由等差数列的性质可得a1+a8=12,而S8=,代入计算即可.解答:解:由等差数列的性质可得a1+a8=a4+a5=12,故S8===48故选D点评:本题考查等差数列的性质和求和公式,属基础题.8.已知函数f(x)的导函数f′(x),满足xf′(x)+2f(x)=,且f(1)=1,则函数f(x)的最大值为()A.0 B. C. D.2e参考答案:C【考点】63:导数的运算;3H:函数的最值及其几何意义.【分析】由题意构造函数g(x)=x2f(x),可解得g(x)=1+lnx,f(x)=,利用导数判断函数f(x)的单调性,求得最大值即可.【解答】解:∵xf′(x)+2f(x)=,∴x2f′(x)+2xf(x)=,令g(x)=x2f(x),则g′(x)=x2f′(x)+2xf(x)=,∵f(1)=1,∴g(1)=1,∴g(x)=1+lnx,f(x)=,∴f′(x)=,∴x<时,f′(x)=>0,x>时,f′(x)=<0,∴当x=时,f(x)max=f()==.故选C.9.已知复数,是的共轭复数,则·=(

A、 B、 C、1 D、参考答案:B略10.命题“?x∈R,使得n≥x2”的否定形式是()A.?x∈R,使得n<x2 B.?x∈R,使得n≥x2C.?x∈R,使得n<x2 D.?x∈R,使得n≤x2参考答案:C【考点】2J:命题的否定.【分析】利用全称命题对方的是特称命题,写出结果即可.【解答】解:因为全称命题对方的是特称命题,所以,命题“?x∈R,使得n≥x2”的否定形式是:?x∈R,使得n<x2.故选:C二、填空题:本大题共7小题,每小题4分,共28分11.已知P为椭圆+=1上的一个点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为.参考答案:7【考点】椭圆的简单性质.【分析】由椭圆的定义:|PF1|+|PF2|=2a=10.圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的圆心和半径分别为F1(﹣3,0),r1=1;F2(3,0),r2=2.由|PM|+r1≥|PF1|,|PN|+r2≥|PF2|.|PM|+|PN|≥|PF1|+|PF2|﹣1﹣2=7.【解答】解:由椭圆+=1焦点在x轴上,a=5,b=4,c=3,∴焦点分别为:F1(﹣3,0),F2(3,0).|PF1|+|PF2|=2a=10.圆(x+3)2+y2=1的圆心与半径分别为:F1(﹣3,0),r1=1;圆(x﹣3)2+y2=4的圆心与半径分别为:F2(3,0),r2=2.∵|PM|+r1≥|PF1|,|PN|+r2≥|PF2|.∴|PM|+|PN|≥|PF1|+|PF2|﹣1﹣2=7.故答案为:7.12.在正方体中,异面直线与的夹角的大小为__________参考答案:60°略13.设变量x,y满足约束条件,则目标函数的最大值为. 参考答案:【考点】简单线性规划. 【专题】计算题;作图题;数形结合法;不等式. 【分析】若求目标函数的最大值,则求2x+y的最小值,从而化为线性规划求解即可. 【解答】解:若求目标函数的最大值, 则求2x+y的最小值, 作平面区域如下, , 结合图象可知, 过点A(1,1)时,2x+y有最小值3, 故目标函数的最大值为, 故答案为:. 【点评】本题考查了线性规划的变形应用及数形结合的思想应用,同时考查了指数函数的单调性的应用. 14.过点P(2,1)与直线l:y=3x-4垂直的直线方程为___▲_;参考答案:略15.设直线的方程是,从1,2,3,4,5这五个数中每次取两个不同的数作为A、B的值,则所得不同直线的条数是(

)A.20 B.19 C.18 D.16参考答案:C解:由题意知本题是一个排列组合问题,∵从1,2,3,4,5这五个数中每次取两个不同的数作为A、B的值有A52=20种结果,在这些直线中有重复的直线,当A=1,B=2时和当A=2,B=4时,结果相同,把A,B交换位置又有一组相同的结果,∴所得不同直线的条数是20-2=18,故答案为:1816.直线与平面所成角为,,则与所成角的取值范围是

_________

参考答案:

解析:直线与平面所成的的角为与所成角的最小值,当在内适当旋转就可以得到,即与所成角的的最大值为17.若圆C1:x2+y2+2ax+a2–4=0(a∈R)与圆C2:x2+y2–2by–1+b2=0(b∈R)恰有三条公切线,则a+b的最大值为__________.参考答案:3三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.求经过两直线:和:的交点,且与直线:垂直的直线的方程.参考答案:解法一:解方程组的交点(0,2).直线的斜率为,直线的斜率为.直线的方程为,即.解法二:设所求直线的方程为.由该直线的斜率为,求得的值11,即可以得到的方程为.19.(12分)已知函数.(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)求的极值;

(Ⅲ)当是,若对,恒成立,求的取值范围参考答案:解:(Ⅰ)∵,∴且.

又,.

∴在点处的切线方程为:,即.

(Ⅱ)的定义域为,,令得.当时,,是增函数;当时,,是减函数;

∴在处取得极大值,即.

(Ⅲ)

20.(2016春?广东校级期末)为了推进身体健康知识宣传,有关单位举行了有关知识有奖问答活动,随机对市民15~65岁的人群抽样n人,回答问题统计结果如图表所示:组号分组回答正确的人数回答正确的人数占本组的频率频率正确直方图第1组[15,25)50.5第2组[25,35)a0.9第3组[35,45)27x第4组[45,55)90.36第5组[55,65)30.2(1)分别求出n,a,x的值;(2)请用统计方法估计参与该项知识有奖问答活动的n人的平均年龄(保留一位小数).参考答案:【考点】频率分布直方图.【专题】对应思想;数形结合法;概率与统计.【分析】(1)由频率表中的数据,求出样本容量n与数据a、x的值;(2)根据频率分布直方图,计算对应数据的平均值即可.【解答】解:(1)由频率表中第4组数据可知,第4组总人数为=25,再结合频率分布直方图可知n==100,∴a=100×0.02×10×0.9=18,又第三组总人数为100×0.03×10=30,∴x==0.9;…(4分)(2)根据频率分布直方图,得参与该项知识有奖问答活动的n人的平均年龄为=20×0.010×10+30×0.020×10+40×0.030×10+50×0.025×10+60×0.015×10=41.5.【点评】本题考查了频率分布表与频率分布直方图的应用问题,解题的关键是读懂频率分布表与直方图,是基础题目.21.已知数列{an}为公差不为零的等差数列,其前n项和为Sn,满足S5﹣2a2=25,且a1,a4,a13恰为等比数列{bn}的前三项(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)设Tn是数列{}的前n项和,是否存在k∈N*,使得等式1﹣2Tk=成立,若存在,求出k的值;若不存在,说明理由.参考答案:【考点】数列的求和;数列递推式.【分析】(I)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(II)利用“裂项求和”与数列的单调性即可得出.【解答】解:(Ⅰ)设等差数列{an}的公差为d(d≠0),∴,解得a1=3,d=2,∵b1=a1=3,b2=a4=9,∴.(Ⅱ)由(I)可知:an=3+2(n﹣1)=2n+1.,∴=,∴,单调递减,得,而,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论