湖南省衡阳市 衡东县踏庄中学高二数学理联考试卷含解析_第1页
湖南省衡阳市 衡东县踏庄中学高二数学理联考试卷含解析_第2页
湖南省衡阳市 衡东县踏庄中学高二数学理联考试卷含解析_第3页
湖南省衡阳市 衡东县踏庄中学高二数学理联考试卷含解析_第4页
湖南省衡阳市 衡东县踏庄中学高二数学理联考试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省衡阳市衡东县踏庄中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各面都是面积相等的三角形,同一顶点上的任两条棱的夹角都相等.A.① B.② C.①②③ D.③参考答案:C【考点】类比推理.【分析】正四面体中,各棱长相等,同一顶点上的任两条棱的夹角都相等;①正确;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等,②正确;③各面都是面积相等的三角形,同一顶点上的任两条棱的夹角都相等,③正确.【解答】解:正四面体中,各棱长相等,各侧面是全等的等边三角形,因此,同一顶点上的任两条棱的夹角都相等;①正确;对于②,∵正四面体中,各个面都是全等的正三角形,相邻两个面所成的二面角中,它们有共同的高,底面三角形的中心到对棱的距离相等,∴相邻两个面所成的二面角都相等,②正确;对于③,∵各个面都是全等的正三角形,∴各面都是面积相等的三角形,同一顶点上的任两条棱的夹角都相等,③正确.∴①②③都是合理、恰当的.故选C.2.从个位数与十位数之和为奇数的两位数中任取一个,其中个位数为0的概率是(

)A.

B.

C.

D.参考答案:A略3.已知空间两不同直线,两不同平面,下列命题正确的是(

)A.若且,则B.若且,则C.若且,则D.若不垂直于,且,则不垂直于参考答案:B对于A,若且,则或,故错误;对于B,若且,则由面面垂直的判定定理得α⊥β,故C正确;对于C,若且,则,故错误;若m不垂直于α,且n?α,则m可以垂直于n,故D错误.故选:B

4.用0,1,2,3,4排成没有重复数字的五位数,要求偶数相邻,奇数也相邻,则这样的五位数的个数是

A、20

B、24

C、30

D、36参考答案:A略5.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE,若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是(

)A.|BM|是定值B.点M在某个球面上运动C.存在某个位置,使DE⊥A1CD.存在某个位置,使MB∥平面A1DE参考答案:C考点:平面与平面之间的位置关系.专题:综合题;空间位置关系与距离.分析:取CD中点F,连接MF,BF,则平面MBF∥平面A1DE,可得D正确;由余弦定理可得MB2=MF2+FB2﹣2MF?FB?cos∠MFB,所以MB是定值,M是在以B为圆心,MB为半径的圆上,可得A,B正确.A1C在平面ABCD中的射影为AC,AC与DE不垂直,可得C不正确.解答:解:取CD中点F,连接MF,BF,则MF∥DA1,BF∥DE,∴平面MBF∥平面A1DE,∴MB∥平面A1DE,故D正确由∠A1DE=∠MFB,MF=A1D=定值,FB=DE=定值,由余弦定理可得MB2=MF2+FB2﹣2MF?FB?cos∠MFB,所以MB是定值,故A正确.∵B是定点,∴M是在以B为圆心,MB为半径的圆上,故B正确,∵A1C在平面ABCD中的射影为AC,AC与DE不垂直,∴存在某个位置,使DE⊥A1C不正确.故选:C.点评:掌握线面、面面平行与垂直的判定和性质定理及线面角、二面角的定义及求法是解题的关键.6.用三段论推理:“任何实数的平方大于0,因为a是实数,所以a2>0”,你认为这个推理()A. 大前提错误 B. 小前提错误 C. 推理形式错误 D. 是正确的参考答案:A略7.设a,b,c,d∈R,且a>b,c<d,则下列结论中正确的是()A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>参考答案:B【考点】不等关系与不等式.【分析】利用不等式的基本性质即可选出答案.【解答】解:∵c<d,∴﹣c>﹣d,又a>b,∴a﹣c>b﹣d.故答案为B.8.实数x、y满足3x2+2y2=6x,则x2+y2的最大值为(

)A.B.4

C.

D.5参考答案:B略9.函数的单调减区间为(

)A.(-1,1]

B.(0,1]

C.[1,+∞)

D.(0,+∞)参考答案:B根据题意,对于函数,由于(x>0),可知,当y’<0时,则可知0<x<1能满足题意,故可知单调减区间为(0,1],选B.考点:导数的运用

10.一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥的体积为(

)A.4 B.8 C.16 D.24参考答案:B【分析】根据三视图知,三棱锥的一条长为6的侧棱与底面垂直,底面是直角边为2、4的直角三角形,利用棱锥的体积公式计算即可.【详解】由三视图知三棱锥的侧棱与底垂直,其直观图如图,可得其俯视图是直角三角形,直角边长为2,4,,棱锥的体积,故选B.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.二、填空题:本大题共7小题,每小题4分,共28分11.学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有_________种.参考答案:930分析:分三种情况讨论,分别求出甲乙都入选、甲不入选,乙入选、甲乙都不入选,,相应的情况不同的组队形式的种数,然后求和即可得出结论.详解:若甲乙都入选,则从其余人中选出人,有种,男生甲不适合担任一辩手,女生乙不适合担任四辩手,则有种,故共有种;若甲不入选,乙入选,则从其余人中选出人,有种,女生乙不适合担任四辩手,则有种,故共有种;若甲乙都不入选,则从其余6人中选出人,有种,再全排,有种,故共有种,综上所述,共有,故答案为.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.12.已知,且满足,则的最小值是

参考答案:1813.以下四个关于圆锥曲线的命题中真命题的序号为

. ①设A、B为两个定点,k为正常数,,则动点P的轨迹为椭圆; ②双曲线与椭圆有相同的焦点; ③若方程的两根可分别作为椭圆和双曲线的离心率,则; ④到定点及定直线的距离之比为的点的轨迹方程为.

参考答案:②③略14.用一个平行于圆锥底面的平面截该圆锥,截得圆台的上、下底面半径之比是1

4,截取的小圆锥的母线长是cm,则圆台的母线长

cm.参考答案:915.已知向量=(2,1),=(x,﹣1),且﹣与共线,则x的值为.参考答案:﹣2【考点】平面向量的坐标运算.【分析】求出向量﹣,然后利用向量与共线,列出方程求解即可.【解答】解:向量=(2,1),=(x,﹣1),﹣=(2﹣x,2),又﹣与共线,可得2x=﹣2+x,解得x=﹣2.故答案为:﹣2.【点评】本题考查向量的共线以及向量的坐标运算,基本知识的考查.16.以下五个关于圆锥曲线的命题中:①双曲线与椭圆有相同的焦点;②方程的两根可分别作为椭圆和双曲线的离心率;③设A、B为两个定点,为常数,若,则动点P的轨迹为双曲线;④过抛物线的焦点作直线与抛物线相交于A、B两点,则使它们的横坐标之和等于5的直线有且只有两条。其中真命题的序号为

(写出所有真命题的序号)参考答案:①④【答案】17.已知实数1,m,9构成一个等比数列,则圆锥曲线+y2=1的离心率为_________.参考答案:或

略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,过抛物线y2=2px(p>0)焦点F的直线交抛物线于A、B两点,O为坐标原点,l为抛物线的准线,点D在l上。(1)求证:“如果A、O、D三点共线,则直线DB与x轴平行”;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.参考答案:(1)证明:设点A的坐标为(,y0),则直线OA的方程为

(y0≠0)

抛物线的准线方程是x=-

②联立①②,可得点D的纵坐标为y=-

(3分)因为点F的坐标是(,0),所以直线AF的方程为y=(x-)

④其中y≠p2.联立y2=2px与④,可得点B的纵坐标为y=-

⑤由③⑤可知,DB∥x轴.

当y=p2时,结论显然成立.所以,直线DB平行于抛物线的对称轴.(6分)(2)逆命题:如果DB与x轴平行,则A、O、D三点共线它是真命题,证明如下(8分)因为抛物线y2=2px(p>0)的焦点为F(,0),所以经过点F的直线AB的方程可设为x=my+.代入抛物线方程,得y2-2pmy-p2=0.若记A(x1,y1),B(x2,y2),则y1,y2是该方程的两个根,所以y1y2=-p2.(10分)因为DB∥x轴,且点D在准线x=-上,所以点D的坐标为(-,y2),故直线DO的斜率为k=,即k也是直线OA的斜率,所以直线AD经过原点O,即A、O、D三点共线.(12分)略19.已知函数f(x)=|x﹣a|.(Ⅰ)当a=﹣2时,解不等式f(x)≥16﹣|2x﹣1|;(Ⅱ)若关于x的不等式f(x)≤1的解集为[0,2],求证:f(x)+f(x+2)≥2a.参考答案:【考点】绝对值不等式的解法.【专题】选作题;转化思想;综合法;不等式的解法及应用.【分析】(Ⅰ)当a=﹣2时,不等式为|x+2|+|2x﹣1|≥16,分类讨论,去掉绝对值,即可解不等式f(x)≥16﹣|2x﹣1|;(Ⅱ)先求出a,f(x)=|x﹣1|,于是只需证明f(x)+f(x+2)≥2,即证|x﹣1|+|x+1|≥2,利用绝对值不等式,即可证明结论.【解答】(Ⅰ)解:当a=﹣2时,不等式为|x+2|+|2x﹣1|≥16,当x≤﹣2时,原不等式可化为﹣x﹣2﹣2x+1≥16,解之得x≤﹣;当﹣2<x≤时,原不等式可化为x+2﹣2x+1≥16,解之得x≤﹣13,不满足,舍去;当x>时,原不等式可化为x+2+2x﹣1≥16,解之得x≥5;不等式的解集为{x|x≤﹣或x≥5}.(Ⅱ)证明:f(x)≤1即|x﹣a|≤1,解得a﹣1≤x≤a+1,而f(x)≤1解集是[0,2],所以,解得a=1,从而f(x)=|x﹣1|于是只需证明f(x)+f(x+2)≥2,即证|x﹣1|+|x+1|≥2,因为|x﹣1|+|x+1|=|1﹣x|+|x+1|≥|1﹣x+x+1|=2,所以|x﹣1|+|x+1|≥2,证毕.【点评】本题考查绝对值不等式,考查学生分析解决问题的能力,考查分类讨论的数学思想,属于中档题.20.已知过抛物线y2=2px(p>0)的焦点,斜率为的直线交抛物线于A(x1,y1)和B(x2,y2)(x1<x2)两点,且|AB|=9,(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.参考答案:【考点】抛物线的标准方程;直线与圆锥曲线的综合问题.【专题】计算题.【分析】(1)直线AB的方程与y2=2px联立,有4x2﹣5px+p2=0,从而x1+x2=,再由抛物线定义得:|AB|=x1+x2+p=9,求得p,则抛物线方程可得.(2)由p=4,4x2﹣5px+p2=0求得A(1,﹣2),B(4,4).再求得设的坐标,最后代入抛物线方程即可解得λ.【解答】解:(1)直线AB的方程是y=2(x﹣),与y2=2px联立,有4x2﹣5px+p2=0,∴x1+x2=由抛物线定义得:|AB|=x1+x2+p=9∴p=4,∴抛物线方程是y2=8x.(2)由p=4,4x2﹣5px+p2=0得:x2﹣5x+4=0,∴x1=1,x2=4,y1=﹣2,y2=4,从而A(1,﹣2),B(4,4).设=(x3,y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2)又2=8(4λ+1),解得:λ=0,或λ=2.【点评】本题主要考查了抛物线的简单性质.直线与圆锥曲线的综合问题.考查了基本的分析问题的能力和基础的运算能力.21.如图,在四棱锥P﹣ABCED中,PD⊥面ABCD,四边形ABCD为平行四边形,∠DAB=60°,AB=PA=2AD=4,(1)若E为PC中点,求证:PA∥平面BDE(2)求三棱锥D﹣BCP的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论