




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
从欧氏几何到解析几何
湖南大学
数学与计量经济学院前言几何学的起源
几何学的起源十分久远,它产生于早期人类的社会实践,从人类对实物形状的认识开始。而促进几何学产生的直接原因与土地测量及天文活动有关。在古埃及,由于尼罗河每年泛滥一次,每次泛滥,洪水会淹没两岸的土地,一旦洪水退却,需要重新测量土地。因此便逐渐产生了关于几何形体的概念、性质及其度量方面的知识。埃及人在划分土地时,发现很多不同形状的农田,都可以分割为几块较细小的三角形农田,例:
长方形农田两块面积相等的三角形农田梯形农田三块三角形农田埃及数学文献“莫斯科纸草书”与“兰德纸草书”中计有110个数学问题,其中有26个属于几何问题,主要是计算土地面积、谷物体积等公式。由此可见,埃及人当时已掌握了圆周长、面积的近似公式,还知道三角形、圆柱体的求积公式。这些知识也在其它古老文明中出现,巴比伦人在公元前2000年—前1600年,已熟悉计算长方形、直角三角形、等腰三角形的面积,以及一些形体的体积,还掌握了勾股定理的特殊情况。中国秦汉以前的几何学内容,没有留下文字性材料,详细情况不得而知,但从西汉成书的《九章算术》,以及农业社会的社会形态上看,这些几何知识也相当兴旺。历史上,几何学在很长的一段时间里面是一门高度理论化的学科,在假设干世纪里,欧几里得几何控制着数学的舞台.一、欧氏几何和欧氏空间欧几里得〔Euclid,公元前330—公元前275〕是希腊亚历山大的数学教师。于十几岁的少年时,进入“柏拉图学园”学习。著名的古希腊学者阿基米德,是他“学生的学生”——卡农是阿基米德的老师,而欧几里得是卡农的老师。欧几里得将公元前七世纪以来希腊几何积累起来的丰富成果,整理在严密的逻辑系统运算之中,使几何学成为一门独立的、演绎的科学。欧几里得最著名的著作《几何原本》是欧洲数学的根底,总结了平面几何五大公设,被广泛的认为是历史上最成功的教科书。几何,英文为“Geometry”,是由希腊文演变而来的,其原意为“土地测量”。我国明代徐光启翻译《几何原本》时,将“Geometry”一词译为“几何学”,就是从其音译而来。欧几里得不仅是一位学识渊博的数学家,同时还是一位有“温和仁慈的蔼然长者”之称的教育家。在著书育人过程中,他始终牢记着柏拉图学派自古承袭的严谨、求实的传统学风。他对待学生既和蔼又严格,自己却从来不宣扬有什么奉献。对于那些有志于穷尽数学奥秘的学生,他总是循循善诱地予以启发和教育,而对于那些急功近利、在学习上不肯刻苦钻研的人,那么毫不客气地予以批评。1.《几何原本》介绍
《几何原本》共分十三卷,给出了467个命题,几乎涵盖了前人所有的数学成果。全书精心编排,把命题依照彼此的逻辑关系,从简单到复杂,将内容按照顺序排列起来是欧几里得最成功的创造。1.《几何原本》介绍第一卷是全书逻辑推理的根底,给出了什么是点、线、面等23个定义,5条公设,5个公理,由此讨论三角形全等、边角关系、垂线、平行线、平行四边形、多边形、勾股定理等。五条公设:〔1〕从每个点到每个别的点必定可引直线;〔2〕直线可以无限延长;〔3〕以任一点为中心,任意长为半径可以作圆;〔4〕所有直角都相等;〔5〕假设一直线与两条直线相交,且同侧内角和小于两直角,那么此两直线必在该侧相交。五条公理:〔1〕等于同量的量相等;〔2〕等量加等量,和相等;〔3〕等量减等量,差相等;〔4〕彼此重合的东西是相等的;〔5〕整体大于局部。以下图是目前发现的最早的欧几里得《几何原本》中的一页1896-97由两个探险家〔B.P.GrenfellandA.S.Hunt〕在俄克喜林库斯(Oxyrhynchus)发现的纸莎草纸〔公元75年-125年,现存于宾夕法尼亚大学〕.BookII:Proposition5:Ifastraightlineiscutintoequalandunequal
segments,thentherectanglecontainedbytheunequalsegmentsofthewholetogetherwiththesquareonthelinebetween
thepointsofsectionequalsthesquareonthehalf(fromtheclassictranslationofT.L.Heath).命题:如图,设C是线段AB的中点,那么欧氏空间
后人把欧几里得建立的几何理论称为“欧氏几何”;成立欧氏几何的平面称为“欧氏平面”;成立欧氏几何的空间称为“欧氏空间”。公理法欧几里得在《几何原本》使用的这种建立理论体系的方法称为“公理法〔原始公理法〕”。第Ⅴ〔五〕公设第Ⅴ公设等价于:过直线外一点只可作一直线平行于直线。在《几何原本》问世的两千年中,不少人试图去修正,尤其是第Ⅴ公设,被认为可由其余九条所证出,或用更简单或更直观的公理来代替。罗氏几何俄国数学家罗巴切夫斯基〔Lobatchevsky,1793-1856〕也希望能证明第Ⅴ公设,他企图通过否认第Ⅴ公设的等价命题来引出矛盾。但他推出了一个又一个新奇的结论后仍找不到逻辑上的矛盾,这些新的结论构成了一个不同的几何体系,后来被称为罗氏几何。2.希尔伯特与《几何根底》1899年德国数学家希尔伯特〔Hilbert,1862-1943〕发表了著作《几何根底》。希尔伯特在这书中对欧几里得几何及有关几何的公理系统进行了深入的研究。他不仅对欧几里得几何提供了完善的公理体系,还给出证明一个公理对别的公理的独立性以及一个公理体系确实为完备的普遍原那么。三个根本对象:点、直线、平面三种根本关系:“在……之上”、“在……中间”、“合同于”2.希尔伯特与《几何根底》五组公理共20条:第一组关联公理,共8条;第二组顺序公理,共4条;第三组合同公理,共5条;第四组连续公理,共2条;第五组平行公理,共1条。这五组公理满足了公理体系的三个根本要求,即相容性、独立性和完备性。如果把这五组的公理稍作增减,便得出其他不同的几何空间,例如把平行公理中的欧几里得平行公理换为罗巴切夫斯基平行公理,那便把「欧几里得空间」换为「罗巴切夫斯基空间」。现代公理法:以五组公理为根底,陆续定义了一些新的概念和证明一些新的结论〔定理〕,这样建立起了一个依照逻辑关系,排列顺序井然的体系,称为现代公理法。3.公理系统的三个问题构造一个公理体系并不容易,要求满足以下条件:〔1〕无矛盾性:即所有的公理彼此不产生矛盾,也称相容性;〔2〕独立性:即每一条公理都不能由其它公理推出,也就是公理组有最少个数,不能有多余的;〔3〕完备性:即已有的公理已足够了,不能再增加与公理组都相容的新公理。在数学及其它领域,利用公理法思想的地方很多,但一般并未形成欧氏几何公理系统这样严格的理论体系。一般地,任何一个公理系统必须是相容的,但未必是独立的,完备性更不是必需的。3.公理系统的三个问题
除了欧氏几何,罗氏几何与射影几何的公理系统也具备以上三个条件。任何一个公理体系都不可能在本系统内证明它的无矛盾性,也就是说任何一个理论系统最终还是要靠实践来检验它的真伪与价值。3.公理系统的三个问题自从欧几里得的《几何原本》问世以来,人们一直把代数限定在研究数及其关系的范畴内,把几何限定在研究位置和图形的范畴内。代数和几何截然分家持续了几千年,犹如两座高山被万丈深渊分割.二、解析几何二、解析几何到了文艺复兴时期,代数学从阿拉伯传到欧洲以后,数学家笛卡尔和费尔玛受代数学的启发,有了用代数的方法来研究几何的思想,从而产生了连接代数和几何的桥梁,将“数”和“形”紧密联系在一起的科学,解析几何学,又名坐标几何学。二、解析几何法国数学家笛卡尔〔R.Descartes1596-1650〕于1637年发表长篇著作《更好地指导推理和寻求科学真理的方法论》,该书三个附录之一《几何学》阐述了他的坐标几何的思想,标志着解析几何的诞生。笛卡儿在《几何学》里,创立了直角坐标系。他用平面上的一点到两条固定直线的距离来确定点的位置,用坐标来描述空间上的点。他进而又创立了解析几何学,说明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来实现发现几何性质,证明几何性质。解析几何的出现,改变了自古希腊以来代数和几何别离的趋向,把相互对立着的“数”与“形”统一了起来,使几何曲线与代数方程相结合。笛卡儿的创见,为微积分的创立奠定了根底,从而开拓了变量数学的广阔领域。最为可贵的是,笛卡儿用运动的观点,把曲线看成点的运动的轨迹,不仅建立了点与实数的对应关系,而且把形〔包括点、线、面〕和“数”两个对立的对象统一起来,建立了曲线和方程的对应关系。这种对应关系的建立,不仅标志着函数概念的萌芽,而且标明变数进入了数学,使数学在思想方法上发生了伟大的转折--由常量数学进入变量数学的时期。恩格斯评价:“数学中的转折点是笛卡尔的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了数学,微分和积分也立刻成为必要的了”〔《自然辩证法》〕。笛卡儿的思想核心是:把几何学的问题归结成代数形式的问题,用代数学的方法进行计算、证明,从而到达最终解决几何问题的目的。1.笛卡尔的思想核心2.笛卡尔的两个根本观念〔1〕坐标观念:其作用是把欧氏平面上的点与一对有序的实数对应起来。2.笛卡尔的两个根本观念〔2〕将带两个未知数的方程和平面上的曲线相比照的观念:例如二元方程,这种通常有无穷多组解的所谓“不定方程”对代数学家来说是索然无趣的,但笛卡尔注意到当x连续地改变时,方程相应确定的y,于是两个变量x,y可以看作是平面上运动着的点的坐标,于是这样的点组成一条平面曲线。2.笛卡尔的两个根本观念以上两个观念概括来讲,就是用代数方法去解决几何问题,这就是解析几何的根本思想。具体地,借助坐标系,把几何对象,几何结构代数化,从而用代数的方法研究几何问题。3.空间解析几何1731年,法国人克雷洛〔Clairant1713-1765〕出版了《关于双重曲率的曲线的研究》一书。这是一个最早的空间解析几何著作,同时也研究了微分几何学。
在空间建立坐标系,可以把点与有序三实数组建立对应。从而,可用方程表示曲面,用方程组:
表示空间的曲线。3.空间解析几何空间解析几何主要研究二次曲面,如:椭球面、双曲面、抛物面及二次柱面等三、几何学在古代工程测量中的应用(一)海船测距〔二〕金字塔测高泰勒斯〔Thales〕的二个问题泰勒斯〔Thales,约公元前600年〕,是希腊哲学的奠基人之一,并被希腊人和罗马人尊为“希腊七贤”之一,是他最早将几何研究引进希腊,人们称之为演绎推理之父。他既是一位数学家,又是一名教师,一名哲学家,一名天文学家,一个精明的商人,而且是第一个采用一步步证实的方法来证明自己结论的几何学家。(一)海船测距这个问题是泰勒斯〔Thales〕提出的,他还提出勒金字塔的测高问题,对于生活在2600余年〔公元前约600年〕前的泰勒斯,至今人们所知甚少,只知道是希腊哲学的奠基人之一,并被希腊人和罗马人尊为“希腊七贤”之一。那时没有任何平面几何,当然更没有全等三角形的概念,时间是公元前600年。在那个时代,他能够想到利用这种方法进行测量已经使很伟大的了!〔二〕金字塔测高
公元前585年,泰勒斯正确地预言了当时的日蚀。他还利用影子和相似三角形来计算大金字塔地高度,并使埃及人为之震惊!图中的四棱锥为金字塔,左边的小三角形表示一个装置,即在平地上树起一根3米的杆子,在某一时刻,它在太阳光底下的影子比方说是4.8米。泰勒斯在同一时刻测得金字塔在太阳光底下的影子是235米。因为这数字是在同一时刻测出的,故由于那两个粗线三角形相似,从而泰勒斯测得的塔高应从下式来计算:金字塔高=235×3/4.8=146.875〔米〕要注意的是,此处比例值〔杆高/杆影长〕是解决问题的关键。其实这个数在一天里的不同时刻有着不同的值,因为这个数来自太阳在地平线上升起的角度。泰勒斯特地根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西机电职业技术学院《自动控制系统》2023-2024学年第二学期期末试卷
- 云南能源职业技术学院《电视频道包装》2023-2024学年第一学期期末试卷
- 上饶卫生健康职业学院《现代环境生物技术》2023-2024学年第二学期期末试卷
- 苏州托普信息职业技术学院《铅球》2023-2024学年第一学期期末试卷
- 四川工商职业技术学院《智能工厂集成系统》2023-2024学年第二学期期末试卷
- 驾校租赁土地合同协议
- cpvc管购买合同协议
- 工程材料租赁合同协议
- 建筑栏杆安装合同协议
- 废品回收利用合同协议
- 贵州国企招聘2025贵州路桥集团有限公司招聘35人笔试参考题库附带答案详解
- 卫生管理行业人才培养与社会责任分析试题及答案
- DB32T 5082-2025建筑工程消防施工质量验收标准
- 2025年北京龙双利达知识产权代理有限公司招聘笔试参考题库含答案解析
- 2024-2025学年人教新版七年级下册数学期中复习试卷(含详解)
- 2025年中国BOD测试仪市场调查研究报告
- 2025克拉玛依机场第一季度招聘(15人)笔试参考题库附带答案详解
- 广东省阳江市阳东正雅学校等多校2024-2025学年高二下学期3月联考思想政治试题(含答案)
- 企业事故隐患内部报告奖励制度
- 生态学中的种间关系解析试题及答案
- 汽车发动机构造与维修试题
评论
0/150
提交评论