版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆长寿中学高二数学理上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.“点P到两条坐标轴距离相等”是“点P的轨迹方程为y=|x|”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.不充分不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】设动点的坐标为(x,y),结合与两坐标轴距离即可求得轨迹方程.【解答】解:设动点P(x,y),则它到两坐标轴x,y距离的分别为|y|,|x|,∴到两坐标轴距离相等的点的轨迹方程是|x|=|y|,故y=|x|是|x|=|y|的必要不充分条件,故选:B.2.圆上的点到直线的距离的最大值是(
)
A.
B.
C.
D. 参考答案:B略3.已知复数z满足,则z=(
)A、-5
B、5
C、-3
D、3参考答案:B4.方程的曲线形状是A、圆
B、直线
C、圆或直线
D、圆或两射线参考答案:D5.直线x﹣y+3=0的斜率是()A. B. C.D.参考答案:A考点:直线的斜率.专题:直线与圆.分析:化直线的一般式方程为斜截式,则直线的斜率可求.解答:解:由x﹣y+3=0,得y=x+3,即.∴直线x﹣y+3=0的斜率是.故选:A.点评:本题考查了直线的斜率,考查了一般式化斜截式,是基础题.6.在△ABC中,,,,则的面积为(
)A. B.4 C. D.参考答案:C因为中,,,,由正弦定理得:,所以,所以,所以,,所以,故选C.7.若直线与互相垂直,则a等于(
)A.3 B.1 C.0或 D.1或-3参考答案:D8.下列正确的是(
)A.类比推理是由特殊到一般的推理B.演绎推理是由特殊到一般的推理C.归纳推理是由个别到一般的推理D.合情推理可以作为证明的步骤参考答案:C9.已知函数f(x)的导函数f′(x),满足xf′(x)+2f(x)=,且f(1)=1,则函数f(x)的最大值为()A.0 B. C. D.2e参考答案:C【考点】63:导数的运算;3H:函数的最值及其几何意义.【分析】由题意构造函数g(x)=x2f(x),可解得g(x)=1+lnx,f(x)=,利用导数判断函数f(x)的单调性,求得最大值即可.【解答】解:∵xf′(x)+2f(x)=,∴x2f′(x)+2xf(x)=,令g(x)=x2f(x),则g′(x)=x2f′(x)+2xf(x)=,∵f(1)=1,∴g(1)=1,∴g(x)=1+lnx,f(x)=,∴f′(x)=,∴x<时,f′(x)=>0,x>时,f′(x)=<0,∴当x=时,f(x)max=f()==.故选C.10.已知函数,且,则a=(
)A.-1 B.2 C.1 D.0参考答案:D【分析】求出函数的导数,结合条件,可求出实数的值。【详解】因为,所以,解得,故选:D。【点睛】本题考查导数的计算,考查导数的运算法则以及基本初等函数的导数,考查运算求解能力,属于基础题。二、填空题:本大题共7小题,每小题4分,共28分11.若,则函数的最小值为__________.参考答案:4设,∵,∴,函数可化为,
由于对称轴为,∴时,函数有最小值4,故答案为4.12.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为4+5π,则半径r=.参考答案:1【考点】简单空间图形的三视图.【专题】计算题;方程思想;空间位置关系与距离;立体几何.【分析】通过三视图可知该几何体是一个半球和半个圆柱所成的组合体,根据几何体的表面积,构造关于r的方程,计算即可得到答案.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr2+×2r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为4+5π,∴5πr2+4r2=4+5π,解得r=1,故答案为:1【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.13.在△ABC中,已知a=17,则b·CosC+c·CosB=_________________。参考答案:1714.直线的倾斜角是__________________;参考答案:15.二面角为,是棱上的两点,分别在半平面内,,则长为
。参考答案:2a16.在正三棱锥P-ABC中,PA=,,点E、F分别在侧棱PB、PC上,则周长的最小值为.参考答案:略17.已知椭圆:,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,则||+||的最大值为
.参考答案:【考点】椭圆的简单性质.【专题】转化思想;定义法;圆锥曲线的定义、性质与方程.【分析】由椭圆方程求得椭圆的半焦距,结合椭圆定义求得|AF2|+|BF2|+|AB|=4a=12,再求出当AB垂直于x轴时的最小值,则|AF2|+|BF2|的最大值可求.【解答】解:由椭圆,得a=3,b=2,c==,由椭圆的定义可得:|AF2|+|BF2|+|AB|=4a=12,∵当且仅当AB⊥x轴时,|AB|取得最小值,把x=﹣代入,解得:y=±,∴|AB|min=,∴|AF2|+|BF2|的最大值为12﹣=.故答案为:.【点评】本题考查了椭圆的定义,考查了椭圆的简单几何性质,关键是明确当AB垂直于x轴时焦点弦最短,是基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系xOy上,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,曲线C的极坐标方程为.(1)求直线l与曲线C的直角坐标方程;(2)若直线l与曲线C交于不同的两点,求实数a的取值范围.参考答案:(1):,:.(2).19.(本小题满分12分)已知双曲线方程2x2-y2=2.
(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.参考答案:(1)设A(2,1)是弦P1P2的中点,且P1(x1,y1),P2(x2,y2),则x1+x2=4,y1+y2=2.20.求满足下列条件的椭圆的标准方程:(1)经过两点;(2)过点P(﹣3,2),且与椭圆有相同的焦点.参考答案:【考点】椭圆的标准方程.【分析】(1)设出椭圆的标准方程,代入点的坐标,即可求得椭圆的标准方程;(2)由椭圆,求得焦点坐标,设所求椭圆的方程为,(a2>5),将A(﹣3,2)代入椭圆方程,求得a2的值,即可求得椭圆的标准方程.【解答】解:(1)设所求的椭圆方程为mx2+ny2=1,(m>0,n>0,m≠n),∵椭圆经过点,∴,解得m=,n=,∴所求的椭圆方程为;(2)∵椭圆的焦点为F(±,0),∴设所求椭圆的方程为,(a2>5),把点(﹣3,2)代入,得,整理,得a4﹣18a2+45=0,解得a2=15,或a2=3(舍).∴所求的椭圆方程为.21.(12分)(1)已知,其中,求的最小值,及此时与的值.(2)关于的不等式,讨论的解.参考答案:22.已知圆C的半径为2,圆心在轴正半轴上,直线与圆C相切(1)求圆C的方程(2)过点的直线与圆C交于不同的两点且为时求:的面积参考答案:(I)设圆心为,则圆C的方程为因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 统编人教版六年级语文上册第2课《丁香结》精美课件
- 摩托车手买卖合同手摩托车买卖合同模板
- 平整场地合同书
- 围栏安装合同范本
- 回归分析教育课件
- 酒店保洁外包合同范本
- 《工程质量问题汇编》课件
- 产品销售协议合同范本
- 财政请示报告范文
- 区域独家代理合同模板
- NB-T+31010-2019陆上风电场工程概算定额
- 2024广西水利电力职业技术学院教师招聘考试笔试试题
- 在线网课知道智慧《大学物理(三峡大学)》单元测试考核答案
- 养生防治及康复原则
- 商业伦理与企业社会责任(山东财经大学)智慧树知到期末考试答案章节答案2024年山东财经大学
- 《智慧农业》课件
- 原地投垒球教案
- 《世界现代设计史》课件-第10章各国设计简史
- 医务科工作制度及流程(全套)
- 裸眼3D项目方案
- 公车拍卖质量保证措施
评论
0/150
提交评论