版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省恩施州咸丰县2023年九年级数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.函数与()在同一坐标系中的图象可能是()A. B. C. D.2.将半径为5的圆形纸片,按如图方式折叠,若和都经过圆心,则图中阴影部分的面积是()A. B. C. D.3.下列计算中正确的是()A. B. C. D.4.若关于的方程,它的一根为3,则另一根为()A.3 B. C. D.5.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.96.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.47.如图在中,弦于点于点,若则的半径的长为()A. B. C. D.8.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.29.如图,点的坐标分别为和,抛物线的顶点在线段上运动,与轴交于两点(在的左侧),若点的横坐标的最小值为0,则点的横坐标最大值为()A.6 B.7 C.8 D.910.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<411.如图,在Rt△ABC中,∠ACB=90°,AC=24,AB=25,CD是斜边AB上的高,则cos∠BCD的值为()A. B. C. D.12.二次根式中x的取值范围是()A.x≥﹣2 B.x≥2 C.x≥0 D.x>﹣2二、填空题(每题4分,共24分)13.如图,将正方形绕点逆时针旋转至正方形,边交于点,若正方形的边长为,则的长为________.14.在中,,,点D在边AB上,且,点E在边AC上,当________时,以A、D、E为顶点的三角形与相似.15.分解因式:x3-4x16.方程x(x﹣2)﹣x+2=0的正根为_____.17.抛物线的顶点坐标是_______.18.如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是__________.三、解答题(共78分)19.(8分)如图,中,是的角平分线,,在边上,以为直径的半圆经过点,交于点.(1)求证:是的切线;(2)已知,的半径为,求图中阴影部分的面积.(最后结果保留根号和)20.(8分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由;(3)求当线段AM最短时的长度21.(8分)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针旋转得到△ADC,连接OD,OA.(1)求∠ODC的度数;(2)若OB=4,OC=5,求AO的长.22.(10分)如图,已知,是一次函数与反比例函数图象的两个交点,轴于点,轴于点.(1)求一次函数的解析式及的值;(2)是线段上的一点,连结,若和的面积相等,求点的坐标.23.(10分)已知反比例函数y=(m为常数)的图象在第一、三象限(1)求m的取值范围;(2)如图,若该反比例函数的图象经过平行四边形ABOD的顶点D,点A、B的坐标分别为(0,3),(-2,0).求出函数解析式.24.(10分)综合与实践背景阅读:旋转就是将图形上的每一点在平面内绕着旋转中心旋转固定角度的位置移动,其中“旋”是过程,“转”是结果.旋转作为图形变换的一种,具备图形旋转前后对应点到旋转中心的距离相等:对应点与旋转中心所连线段的夹角等于旋转角:旋转前、后的图形是全等图形等性质.所以充分运用这些性质是在解决有关旋转问题的关健.实践操作:如图1,在Rt△ABC中,∠B=90°,BC=2AB=12,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.问题解决:(1)①当α=0°时,=;②当α=180°时,=.(2)试判断:当0°≤a<360°时,的大小有无变化?请仅就图2的情形给出证明.问题再探:(3)当△EDC旋转至A,D,E三点共线时,求得线段BD的长为.25.(12分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.26.数学活动课上,老师提出问题:如图1,有一张长,宽的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成-一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:(1)设小正方形的边长为,体积为,根据长方体的体积公式得到和的关系式;(2)确定自变量的取值范围是(3)列出与的几组对应值.······(4)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点画出该函数的图象如图2,结合画出的函数图象,当小正方形的边长约为时,盒子的体积最大,最大值约为.(估读值时精确到)
参考答案一、选择题(每题4分,共48分)1、D【分析】根据反比例函数与一次函数的图象特点解答即可.【详解】时,,在一、二、四象限,在一、三象限,无选项符合.时,,在一、三、四象限,()在二、四象限,只有D符合;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由的取值确定函数所在的象限.2、B【解析】如图(见解析),先利用翻折的性质、直角三角形的性质求出的度数,再根据垂径定理、等腰三角形的性质得出度数,从而得出的度数,最后根据翻折的性质得出,利用扇形的面积公式即可得.【详解】如图,过点O作,并延长OD交圆O与点E,连接OA、OB、OC(垂径定理)由翻折的性质得(等腰三角形的三线合一)同理可得故选:B.【点睛】本题考查了垂径定理、翻折的性质、扇形的面积公式等知识点,利用翻折的性质得出的度数是解题关键.3、D【分析】直接利用二次根式混合运算法则分别判断得出答案.【详解】A、无法计算,故此选项不合题意;B、,故此选项不合题意;C、,故此选项不合题意;D、,正确.故选D.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.4、C【分析】设方程的另一根为t,根据根与系数的关系得到3+t=2,然后解关于t的一次方程即可.【详解】设方程的另一根为t,
根据题意得:3+t=2,
解得:t=-1,
即方程的另一根为-1.
故选:C.【点睛】本题主要考查了一元二次方程根与系数的关系:是一元二次方程的两根时,,.5、A【分析】先利用勾股定理判断△ABC为直角三角形,且∠BAC=90°,继而证明四边形AEOF为正方形,设⊙O的半径为r,利用面积法求出r的值即可求得答案.【详解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC为直角三角形,且∠BAC=90°,∵⊙O为△ABC内切圆,∴∠AFO=∠AEO=90°,且AE=AF,∴四边形AEOF为正方形,设⊙O的半径为r,∴OE=OF=r,∴S四边形AEOF=r²,连接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴,∴r=2,∴S四边形AEOF=r²=4,故选A.【点睛】本题考查了三角形的内切圆,勾股定理的逆定理,正方形判定与性质,面积法等,正确把握相关知识是解题的关键.6、B【解析】∵正三角形是轴对称能图形;平行四边形是中心对称图形;正五边形是轴对称图形;正六边形既是中心对称图形又是轴对称图形,∴中心对称图形的有2个.故选B.7、C【分析】根据垂径定理求得OD,AD的长,并且在直角△AOD中运用勾股定理即可求解.【详解】解:弦,于点,于点,四边形是矩形,,,,;故选:.【点睛】本题考查了垂径定理、勾股定理、矩形的判定与性质;利用垂径定理求出AD,AE的长是解决问题的关键.8、D【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是方差是故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.9、B【分析】根据待定系数法求得顶点是A时的解析式,进而即可求得顶点是B时的解析式,然后求得与x轴的交点即可求得.【详解】解:∵点C的横坐标的最小值为0,此时抛物线的顶点为A,
∴设此时抛物线解析式为y=a(x-1)2+1,
代入(0,0)得,a+1=0,
∴a=-1,
∴此时抛物线解析式为y=-(x-1)2+1,
∵抛物线的顶点在线段AB上运动,
∴当顶点运动到B(5,4)时,点D的横坐标最大,
∴抛物线从A移动到B后的解析式为y=-(x-5)2+4,
令y=0,则0=-(x-5)2+4,
解得x=1或3,
∴点D的横坐标最大值为1.
故选:B.【点睛】本题考查了待定系数法求二次函数的解析式以及二次函数的性质,明确顶点运动到B(5,4)时,点D的横坐标最大,是解题的关键.10、C【解析】根据判别式的意义得△=12﹣1k≥0,然后解不等式即可.【详解】根据题意得△=12﹣1k≥0,解得k≤1.故选C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣1ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.11、B【分析】根据同角的余角相等得∠BCD=∠A,利用三角函数即可解题.【详解】解:在中,∵,,是斜边上的高,∴∠BCD=∠A(同角的余角相等),∴===,故选B.【点睛】本题考查了三角函数的余弦值,属于简单题,利用同角的余角相等得∠BCD=∠A是解题关键.12、A【解析】根据二次根式有意义的条件即可求出x的范围.【详解】由题意可知:x+2≥0,∴x≥﹣2,故选:A.【点睛】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.二、填空题(每题4分,共24分)13、【分析】连接AE,由旋转性质知AD=AB′=3、∠BAB′=30°、∠B′AD=60°,证Rt△ADE≌Rt△AB′E得∠DAE=∠B′AD=30°,由DE=ADtan∠DAE可得答案.【详解】解:如图,连接AE,∵将边长为3的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=3,∠BAB′=30°,∠DAB=90°∴∠B′AD=60°,在Rt△ADE和Rt△AB′E中,,∴Rt△ADE≌Rt△AB′E(HL),∴∠DAE=∠B′AE=∠B′AD=30°,∴DE=ADtan∠DAE=3×=,故答案为.【点睛】此题主要考查全等、旋转、三角函数的应用,解题的关键是熟知旋转的性质及全等三角形的判定定理.14、【解析】当时,∵∠A=∠A,∴△AED∽△ABC,此时AE=;当时,∵∠A=∠A,∴△ADE∽△ABC,此时AE=;故答案是:.15、x(x-2y)2【分析】首先提取公因式x,然后利用完全平方公式进行分解.【详解】解:原式=x(x2-4xy+4y2)故答案为:x(x-2y)2【点睛】本题考查因式分解,掌握完全平方公式的结构是本题的解题关键.16、x=1或x=2【分析】利用提取公因式法解方程即可得答案.【详解】∵x(x﹣2)﹣(x﹣2)=0,∴(x﹣2)(x﹣1)=0,∴x﹣2=0或x﹣1=0,解得:x=2或x=1,故答案为:x=1或x=2【点睛】本题考查解一元二次方程,一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.17、(5,3)【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h,k),题目比较简单.18、10.5【解析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2)6﹣.【分析】(1)连接OE.根据OB=OE得到∠OBE=∠OEB,然后再根据BE是△ABC的角平分线得到∠OEB=∠EBC,从而判定OE∥BC,最后根据∠C=90°得到∠AEO=∠C=90°证得结论AC是⊙O的切线.(2)连接OF,利用S阴影部分=S梯形OECF−S扇形EOF求解即可.【详解】(1)连接OE.∵OB=OE∴∠OBE=∠OEB∵BE是△ABC的角平分线∴∠OBE=∠EBC∴∠OEB=∠EBC∴OE∥BC∵∠C=90°∴∠AEO=∠C=90°又∵OE为半径∴AC是圆O的切线(2)连接OF.∵圆O的半径为4,∠A=30°
,∴AO=2OE=8,∴AE=4,∠AOE=60°,∴AB=12,∴BC=AB=6
AC=6,∴CE=AC﹣AE=2.∵OB=OF,∠ABC=60°,∴△OBF是正三角形.∴∠FOB=60°,CF=6﹣4=2,∠EOF=60°.∴S梯形OECF=(2+4)×2=6.S扇形EOF=∴S阴影部分=S梯形OECF﹣S扇形EOF=6﹣.【点睛】本题考查了切线的判定与性质及扇形面积的计算,解题的关键是连接圆心和切点,利用过切点且垂直于过切点的半径来判定切线.20、(1)证明见解析;(2)BE=1或;(3).【解析】试题分析:(1)由AB=AC,根据等边对等角,可得∠B=∠C,又由△ABC≌△DEF与三角形外角的性质,易证得∠CEM=∠BAE,则可证得:△ABE∽△ECM;(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分别从AE=EM与AM=EM去分析,注意利用全等三角形与相似三角形的性质求解即可求得答案;(3)先设BE=x,由△ABE∽△ECM,根据相似三角形的对应边成比例,易得CM=-(x-3)2+,利用二次函数的性质,继而求得线段AM的最小值.试题解析:(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC-EC=6-5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴∴CE=∴BE=6-∴BE=1或(3)解:设BE=x,又∵△ABE∽△ECM,∴即:∴CM=∴AM=-5-CM=∴当x=3时,AM最短为.考点:相似形综合题.21、(1)60°;(2)【分析】(1)根据旋转的性质得到三角形ODC为等边三角形即可求解;
(2)由旋转的性质得:AD=OB=1,结合题意得到∠ADO=90°.则在Rt△AOD中,由勾股定理即可求得AO的长.【详解】(1)由旋转的性质得:CD=CO,∠ACD=∠BCO.∵∠ACB=∠ACO+∠OCB=60°,∴∠DCO=∠ACO+∠ACD=∠ACO+∠OCB=60°,∴△OCD为等边三角形,∴∠ODC=60°.(2)由旋转的性质得:AD=OB=1.∵△OCD为等边三角形,∴OD=OC=2.∵∠BOC=120°,∠ODC=60°,∴∠ADO=90°.在Rt△AOD中,由勾股定理得:AO=.【点睛】本题考查旋转的性质、等边三角形的性质和勾股定理,解题的关键是掌握旋转的性质、等边三角形的性质和勾股定理.22、(1),m的值为-2;(2)P点坐标为.【分析】(1)由已知条件求出点A,及m的值,将点A,点B代入一次函数解析式即可求出一次函数解析式;(2)设P点坐标为,根据“和的面积相等”,表达出两个三角形的面积,求出点P坐标.【详解】(1)把B(-1,2)代入中得在反比例函数图象上都在一次函数图象上解得∴一次函数解析式为,m的值为-2(2)设P点坐标为则∴P点坐标为【点睛】本题考查了反比例函数一次函数,反比例函数与几何的综合知识,解题的关键是灵活运用函数与几何的知识.23、(1)m<;(2)y=【分析】(1)根据反比例函数的图像和性质得出不等式解之即可;(2)本题根据平行四边形的性质得出点D的坐标,代入反比例函数求出解析式.【详解】解:(1)根据题意得1-2m>0解得m<(2)∵四边形ABOC为平行四边形,∴AD∥OB,AD=OB=2,而A点坐标为(0,3),∴D点坐标为(2,3),∴1-2m=2×3=6,∴反比例函数解析式为y=.24、(1)①,②;(2)无变化,证明见解析;(2)6或.【分析】问题解决:(1)①根据三角形中位线定理可得:BD=CDBC=6,AE=CEAC=2,即可求出的值;②先求出BD,AE的长,即可求出的值;(2)证明△ECA∽△DCB,可得;问题再探:(2)分两种情况讨论,由矩形的判定和性质以及相似三角形的性质可求BD的长.【详解】问题解决:(1)①当α=0°时.∵BC=2AB=3,∴AB=6,∴AC6,∵点D、E分别是边BC、AC的中点,∴BD=CDBC=6,AE=CEAC=2,DEAB,∴.故答案为:;②如图1.,当α=180°时.∵将△EDC绕点C按顺时针方向旋转,∴CD=6,CE=2,∴AE=AC+CE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租赁厂房合同协议
- 招标文件评审的实践操作与评审标准
- 家庭护理家政工雇佣合同
- 土地居间合作合同书
- 现金赎楼服务合同还款还款监管政策
- 借款保证协议模板
- 个人社会救助借款合同范本
- 河砂砾石采购协议
- 林业采伐合作合同
- 抗洪项目论证招标
- 软件工程项目预算表-模板
- 2023秋国开(专)《生产与运作管理》历届期末考试试题及答案
- 《机械制图16螺栓》课件
- 销售人员招聘计划书
- 产值分析报告
- 《树莓派应用开发》课件 第01、2章 树莓派介绍、树莓派操作系统
- 模具热分析报告
- 2024年湖南现代物流职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 多西他赛化疗方案
- 2023年12月江苏省启东市高新区(近海镇)公开招录7名村干部笔试历年高频考点难、易错点荟萃附答案带详解
- 2023-2024学年江苏省扬州市八年级上册期末地理模拟试题(含解析)
评论
0/150
提交评论