湖北省武汉市高新区2023-2024学年数学九上期末监测试题含解析_第1页
湖北省武汉市高新区2023-2024学年数学九上期末监测试题含解析_第2页
湖北省武汉市高新区2023-2024学年数学九上期末监测试题含解析_第3页
湖北省武汉市高新区2023-2024学年数学九上期末监测试题含解析_第4页
湖北省武汉市高新区2023-2024学年数学九上期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市高新区2023-2024学年数学九上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6 C.3 D.92.如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A.105° B.115° C.125° D.135°3.抛物线y=x2﹣4x+1与y轴交点的坐标是()A.(0,1) B.(1,O) C.(0,﹣3) D.(0,2)4.如图所示,的顶点是正方形网格的格点,则的值为()A. B. C. D.5.下列关系式中,是反比例函数的是()A.y= B.y= C.xy=﹣ D.=16.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A.B.C.D.7.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为()A.1 B.2 C.3 D.48.下列计算中,结果是的是A. B. C. D.9.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点为60°角与直尺交点,点为光盘与直尺唯一交点,若,则光盘的直径是().A. B. C.6 D.310.关于反比例函数,下列说法正确的是()A.图象过(1,2)点 B.图象在第一、三象限C.当x>0时,y随x的增大而减小 D.当x<0时,y随x的增大而增大11.一元二次方程的一次项系数和常数项依次是()A.-1和1 B.1和1 C.2和1 D.0和112.如图,在中,点,,分别在边,,上,且,,若,则的值为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,为半圆的直径,点、、是半圆弧上的三个点,且,,若,,连接交于点,则的长是______.14.若点,是抛物线上的两个点,则此抛物线的对称轴是___.15.已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为____________.16.如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=﹣和y=的图象上,则k的值为___.17.二次函数,当时,y随x的增大而减小,则m的取值范围是__________.18.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是__.三、解答题(共78分)19.(8分)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).(1)写出点Q所有可能的坐标;(2)求点Q在x轴上的概率.20.(8分)解方程:(1)(2)21.(8分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.22.(10分)如图1,若要建一个长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.求:(1)若鸡场面积150平方米,鸡场的长和宽各为多少米?(2)鸡场面积可能达到200平方米吗?(3)如图2,若在鸡场内要用竹篱笆加建一道隔栏,则鸡场最大面积可达多少平方米?23.(10分)已知反比例函数的图象过点P(-1,3),求m的值和该反比例函数的表达式.24.(10分)元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系中,⊙经过坐标原点,并与两坐标轴分别交于、两点,点的坐标为,点在⊙上,且,求⊙的半径.图1图2元元的做法如下,请你帮忙补全解题过程.解:如图2,连接,是⊙的直径.(依据是)且(依据是).即⊙的半径为.25.(12分)某校的学生除了体育课要进行体育锻炼外,寒暑假期间还要自己抽时间进行体育锻炼,为了了解同学们假期体育锻炼的情况,开学时体育老师随机抽取了部分同学进行调查,按锻炼的时间x(分钟)分为以下四类:A类(),B类(),C类(),D类(),对调查结果进行整理并绘制了如图所示的不完整的折线统计图和扇形统计图,请结合图中的信息解答下列各题:(1)扇形统计图中D类所对应的圆心角度数为,并补全折线统计图;(2)现从A类中选出两名男同学和三名女同学,从以上五名同学中随机抽取两名同学进行采访,请利用画树状图或列表的方法求出抽到的学生恰好是一男一女的概率.26.如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】连接DF,根据垂径定理得到,得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【详解】解:连接DF,∵直径CD过弦EF的中点G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,

∴∠CFD=90°,

∴CF=CD•cos∠DCF=12×=,故选B.【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.2、D【分析】根据相似三角形的对应角相等即可得出.【详解】∵△ABC∽△EDF,∴∠BAC=∠DEF,又∵∠DEF=90°+45°=135°,∴∠BAC=135°,故选:D.【点睛】本题考查相似三角形的性质,解题的关键是找到对应角3、A【分析】抛物线与y轴相交时,横坐标为0,将横坐标代入抛物线解析式可求交点纵坐标.【详解】解:当x=0时,y=x2-4x+1=1,

∴抛物线与y轴的交点坐标为(0,1),

故选A.【点睛】本题考查了抛物线与坐标轴交点坐标的求法.令x=0,可到抛物线与y轴交点的纵坐标,令y=0,可得到抛物线与x轴交点的横坐标.4、B【分析】连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【详解】解:连接CD(如图所示),设小正方形的边长为,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,则.故选B.【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.5、C【解析】反比例函数的一般形式是y=(k≠0).【详解】解:A、当k=0时,该函数不是反比例函数,故本选项错误;B、该函数是正比例函数,故本选项错误;C、由原函数变形得到y=-,符合反比例函数的定义,故本选项正确;D、只有一个变量,它不是函数关系式,故本选项错误.故选C.【点睛】本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k≠0),反比例函数的一般形式是y=(k≠0).6、B【解析】试题分析:根据中心对称图形的概念,A、C、D都不是中心对称图形,是中心对称图形的只有B.故选B.考点:中心对称图形7、C【详解】∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故选C考点:相似三角形的判定与性质.8、D【解析】根据幂的乘方、同底数幂的乘法的运算法则计算后利用排除法求解.【详解】解:A、a2+a4≠a6,不符合;B、a2•a3=a5,不符合;C、a12÷a2=a10,不符合;D、(a2)3=a6,符合.故选D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方.需熟练掌握且区分清楚,才不容易出错.9、A【分析】设三角板与圆的切点为C,连接,由切线长定理得出、,根据可得答案.【详解】解:设三角板与圆的切点为C,连接OA、OB,如下图所示:由切线长定理知,∴,在中,∴∴光盘的直径为,故选.【点睛】本题主要考查切线的性质,掌握切线长定理和解直角三角形的应用是解题关键.10、D【解析】试题分析:根据反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大.可由k=-2<0,所以函数图象位于二四象限,在每一象限内y随x的增大而增大,图象是轴对称图象,故A、B、C错误.故选D.考点:反比例函数图象的性质11、A【分析】找出2x2-x+1的一次项-x、和常数项+1,再确定一次项的系数即可.【详解】2x2-x+1的一次项是-x,系数是-1,常数项是1.故选A.【点睛】本题考查一元二次方程的一般形式.12、A【分析】根据,得到AC=3EC,则AE=2EC,再根据,得到△ADE∽△EFC,再根据面积之比等于相似比的平方即可求解.【详解】∵,∴AB:BD=AC:EC,又∵∴AC=3EC,∴AE=2EC,∵,∴∠AED=∠C,∠ADE=∠B=∠EFC,∴△ADE∽△EFC又AE=2EC∴=(2:1)2=4:1故选A.【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.二、填空题(每题4分,共24分)13、【分析】连接OC,根据菱形的判定,可得四边形AODC为菱形,从而得出AC=OD,根据圆的性质可得OE=OC=AC=OA=,从而得出△AOC为等边三角形,然后根据同弧所对的圆周角是圆心角的一半,可求得∠EOC,从而得出OE平分∠AOC,根据三线合一和锐角三角函数即可求出OF,从而求出EF.【详解】解:连接OC∵,,OA=OD∴四边形AODC为菱形∴AC=OD∵∴OE=OC=AC=OA=∴△AOC为等边三角形∴∠AOC=60°∵∴∠EOC=2∴OE平分∠AOC∴OE⊥AC在Rt△OFC中,cos∠EOC=∴∴EF=OE-OF=故答案为:.【点睛】此题考查的是菱形的判定及性质、圆的基本性质、等边三角形的判定及性质和解直角三角形,掌握菱形的判定及性质、同弧所对的圆周角是圆心角的一半、等边三角形的判定及性质和用锐角三角函数解直角三角形是解决此题的关键.14、x=3【分析】根据抛物线的对称性即可确定抛物线对称轴.【详解】解:点,是抛物线上的两个点,且纵坐标相等.根据抛物线的对称性知道抛物线对称轴是直线.故答案为:.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.15、8或1.【解析】试题分析:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=1;综上,△ABC面积的所有可能值为8或1,故答案为8或1.考点:解直角三角形;分类讨论.16、1.【分析】过A作AE⊥y轴于E过B作BF⊥y轴于F,通过△AOE∽△BOF,得到,设,于是得到AE=-m,,从而得到,,于是求得结果.【详解】解:过作轴于过作轴于,,,,,,,,设,,,,,,.故答案为1.【点睛】此题考查相似三角形的判定与性质,反比例函数图象上点的坐标特征,解题关键在于作辅助线和利用三角函数进行解答.17、【分析】先根据二次函数的解析式判断出函数的开口方向,再由当时,函数值y随x的增大而减小可知二次函数的对称轴,故可得出关于m的不等式,求出m的取值范围即可.【详解】解:∵二次函数,a=−1<0,∴抛物线开口向下,∵当时,函数值y随x的增大而减小,∴二次函数的对称轴,即,解得,故答案为:.【点睛】本题考查的是二次函数的性质,熟知二次函数的增减性是解答此题的关键.18、1【解析】试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=1.考点:(1)菱形的性质;(2)三角形中位线定理.三、解答题(共78分)19、(1)(0,﹣2),(0,0),(0,1),(2,﹣2),(2,0),(2,1);(2)【分析】(1)树状图展示所有6种等可能的结果数;(2)根据点在x轴上的坐标特征确定点Q在x轴上的结果数,然后根据概率公式求解.【详解】(1)画树状图为:共有6种等可能的结果数,它们为(0,﹣2),(0,0),(0,1),(2,﹣2),(2,0),(2,1);(2)点Q在x轴上的结果数为2,所以点Q在x轴上的概率==.考点:列表法与树状图法;点的坐标.20、(1),;(2),.【分析】(1)用因式分解法求解即可;(2)用公式法求解即可.【详解】解:(1)原方程可化为,移项得,分解因式得,于是得,或,,;(2)原方程化简得,,∴,,.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.21、(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用22、(1)长为15米,宽为10米;(2)不可能达到200平方米;(3)【分析】(1)若鸡场面积150平方米,求鸡场的长和宽,关键是用一个未知数表示出长或宽,并注意去掉门的宽度;(2)求二次函数的最值问题,列出面积的关系式化为顶点式,确定函数最大值与200的大小关系,即可得到答案;(3)此题中首先设出鸡场的面积和宽,列函数式时要注意墙宽有三条道,所以鸡场的长要用篱笆的周长减去3个宽再加上大门的宽2米,再求函数式的最大值.【详解】(1)设宽为x米,则:x(33﹣2x+2)=150,解得:x1=10,x2=(不合题意舍去),∴长为15米,宽为10米;(2)设面积为w平方米,则:W=x(33﹣2x+2),变形为:,∴鸡场面积最大值为=153<200,即不可能达到200平方米;(3)设此时面积为Q平方米,宽为x米,则:Q=x(33﹣3x+2),变形得:Q=﹣3(x-)2+,∴此时鸡场面积最大值为.【点睛】此题考查一元二次方程的实际应用,二次函数最大值的确定方法,正确理解题意列得方程及二次函数关系式是解题的关键.23、2;.【分析】把点P的坐标代入函数解析式求得m的值即可【详解】解:把点P(-1,3)代入,得.解得.把m=2代入,得,即.∴反比例函数的表达式为.【点睛】本题考查了待定系数法确定函数关系式,反比例函数图象上点的坐标特征.难度不大,熟悉函数图象的性质即可解题.24、的圆周角所对的弦是直径;同弧所对的圆周角相等,【分析】连接BC,则BC为直径,根据圆周角定理,得到,再由30°所对直角边等于斜边的一半,即可得到答案.【详解】解:如图1,连接,,是⊙的直径.(90°的圆周角所对的弦是直径)且,,(同弧所对的圆周角相等),,.即⊙的半径为1.故答案为:的圆周角所对的弦是直径;同弧所对的圆周角相等;.【点睛】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论