九年级数学上册讲义(人教版):第06课 一元二次方程应用题(1)(学生版)_第1页
九年级数学上册讲义(人教版):第06课 一元二次方程应用题(1)(学生版)_第2页
九年级数学上册讲义(人教版):第06课 一元二次方程应用题(1)(学生版)_第3页
九年级数学上册讲义(人教版):第06课 一元二次方程应用题(1)(学生版)_第4页
九年级数学上册讲义(人教版):第06课 一元二次方程应用题(1)(学生版)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第06课一元二次方程应用题(1)目标导航目标导航课程标准1、掌握列一元二次方程解应用题的步骤:审、设、列、解、检、答.2、能利用一元二次方程解决问题:①传播类问题;②平均增长(降低)率问题③其他增长率问题④握手问题与送礼问题⑤面积类问题(内挖型、外扩型、开路型、建舍型).3、能理找出等量关系,理解解列等量关系的过程。知识精讲知识精讲知识点01传播类问题1、传播类问题传染源一个人传染x人第一轮新传染人数第一轮传染后总感染人数第二轮新传染人数第二轮传染后总感染人数【解释】若传染源的数量为a,每轮传染的数量为x,则经过一轮传染后感染的总数量为,则经过两轮传染后感染的总数量为整理后的结果为.若经过两轮传染后感染的总数量为b,则所列方程为.【注意】传播类问题所列方程1.开始数量为1,每轮感染的数量为x,经n轮传染后的数量为b,则所列方程为.2.开始数量为a,每轮感染的数量为x,经n轮传染后的数量为b,则所列方程为.知识点02平均增长(降低)率问题设平均增长率为x终止量为b起始量增长1次增长2次三者总和起始量与增长2次之差增长2次与增长1次之差设平均降低率为x终止量为b起始量降低1次降低2次三者总和起始量与降低2次之差降低2次与降低1次之差【解释】①若开始的数量为a,增长率为x,则经过一次增长后的数量为,经过两次增长后的总数量为,若经过两次增长后的数量为b,则可列方程.②若开始的数量为a,降低率为x,则经过一次增长后的数量为,经过两次增长后的总数量为,若经过两次增长后的数量为b,则可列方程.【注意】增长率(或降低率)问题的规律1.增长率问题:设基数为a,平均增长率为x,则一次增长后的值为,两次增长后的值为,依次类推,n次增长后的值为.2.降低率问题:设基数为a,平均降低率为x,则一次降低后的值为,两次降低后的值为,依次类推,n次降低后的值为.知识点03其他增长率问题1、转发消息类A收到一条微信,转发给x人,要求这些收到微信的人继续转发给x人,此时共有b个人收到微信。一开始,收到微信的人数第一次转发次数第一次转发后收到微信的总人数第二次转发次数第二次转发后收到微信的总人数1【解释】A收到消息后,转发给x个人,此时,一共有个人收到消息,第二次转发给个人,此时,一共有个人收到消息。【注意】转发消息类问题与传染问题类型不同的是,收到消息的人,只转发次,转发给x个人后,再不转发;而传染问题,每个被感染的人,每一轮传播都会传染给x个人。2、长枝干类1个主干长x个枝干,每个枝干长x个小枝干,共有b个分支,则知识点04握手问题和送礼问题1、握手问题设有x个人互相握手,每个人都站起来和其他个人握手,每个人都站起来和其他人握手之后,一共握手次,但任意两人之间都握手2次,实际每两人之间只需要握手一次,设握手总次数为b,则;2、送礼问题设有x个人互相送卡片,每个人都给其余个人送一张卡片,每个人都给其他人送卡片之后,一共送了 知识点05面积类问题类型图形面积表示1、内挖类型如图所示的矩形ABCD长为a,宽为b,空白部分宽均为x,则阴影的面积可表示为.2、外扩类型如图所示的阴影部分矩形的长为a,宽为b,空白部分宽均为x,则矩形ABCD的面积可表示为.3、开路问题如图所示矩形的长为a,宽为b,在矩形中挖四条等宽的小路,路宽均为x,则剩余部分(绿色阴影)面积可表示为.4、围栏问题①如图,靠着一面墙MN用篱笆建一个菜园ABCD,篱笆总长为a,设垂直于墙面的边CD长为x,则矩形BC边的长为,矩形ABCD的面积为;②如图,靠着一面墙MN用篱笆建一个菜园ABCD,中间还有一道篱笆EF,篱笆总长为a,设垂直于墙面的边CD长为x,则矩形BC边的长为,矩形ABCD的面积为;③如图,靠着一面墙MN用篱笆建一个菜园ABCD,并开一个宽度为b的门,篱笆总长为a,设垂直于墙面的边CD长为x,则矩形BC边的长为,矩形ABCD的面积为;能力拓展能力拓展考法01传播问题【例题1】肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,依题意可列方程(

)A.1+x=225 B.1+x2=225C.(1+x)2=225 D.1+(1+x2)=225【即学即练1】有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是(

)A.14 B.11 C.10 D.9【即学即练2】2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有256人患新冠肺炎,求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?考法02平均变化率【例题2】某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100【即学即练1】某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%【即学即练2】某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程()A. B.C. D.【即学即练3】某药品原价每盒元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒元,则该药品平均每次降价的百分率是______.考法03枝干问题【例题3】某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是()A. B. C. D.【即学即练1】某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A.2根小分支 B.3根小分支 C.4根小分支 D.5根小分支【即学即练2】某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为(

)A.7 B.8 C.9 D.10考法04握手问题与送礼问题【例题4】“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=210【即学即练1】今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有(

)A.9人 B.10人 C.11人 D.12人【即学即练2】某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A.6 B.7 C.8 D.9【即学即练3】在某次聚会上,每两人都握了一次手,所有人共握手10次,设有二人参加这次聚会,则列出方程正确的是(

)A. B.C. D.考法05面积问题【例题5】原定于2020年10月在昆明举办的世界生物多样性大会第15次缔约方大会,因疫情推迟到2021年5月举办,为喜迎“COP15”,某校团委举办了以“COP15”为主题的学生绘画展览,为美化画面,要在长为30cm、宽为20cm的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图),若设彩纸的宽度为xcm,根据题意可列方程(

)A. B.C. D.【即学即练1】如图所示,在一幅矩形风景画的四周镶一条相同宽度的边框,制成一幅长为80cm,宽为50cm的挂图,设边框的宽为xcm,如果风景画的面积是2800cm2,下列方程符合题意的是()A.(50+x)(80+x)=2800 B.(50+2x)(80+2x)=2800C.(50﹣x)(80﹣x)=2800 D.(50﹣2x)(80﹣2x)=2800【即学即练2】如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是().A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【即学即练3】如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为米.【即学即练4】如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【即学即练5】如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【即学即练6】一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.【即学即练7】如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m,另三边用竹篱笆围成,篱笆总长35m,围成长方形的养鸡场四周不能有空隙.(1)要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到200m2?请说明理由.分层提分分层提分题组A基础过关练1.有一人患了流感,经过两轮传染后共有100人患了流感,每轮传染中平均一个人传染的人数x满足的方程为(

)A.1+x+x(1+x)=100 B.x(1+x)=100C.1+x+x2=100 D.x2=1002.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为米,则根据题意,列方程为(

)A. B.C. D.3.一棵树主干长出若干个枝干,每个枝干又长出枝干数两倍的小分支,主干、枝干和小分支共个,则主干长出的枝干数是(

)A.5个 B.6个 C.7个 D.8个4.在一幅长60dm宽40dm的庆祝建国70周年宣传海报四周镶上相同宽度的金色纸片制成一幅矩形挂图.要使整个挂图的面积为2800dm2,设纸边的宽为xdm,则可列出方程为()A.x2+100x﹣400=0 B.x2﹣100x﹣400=0C.x2+50x﹣100=0 D.x2﹣50x﹣100=05.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得()A. B. C. D.6.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=10007.圣诞节时,某班一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.8.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.9.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为_____.10.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为________.11.2020年1月份以来,新型冠状病毒肺炎在我国蔓延,假如有一人感染新型冠状病毒肺炎,经过两轮传染后共有64人患病.(1)求每轮传染中平均每个人传染了几个健康的人;(2)如果不及时控制,第三轮传染将又有多少个健康的人患病?12.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.题组B能力提升练1.如图,是一面长米的墙,用总长为米的木栅栏(图中的虚线)围一个矩形场地,中间用栅栏隔成同样三块.若要围成的矩形面积为平方米,则的长为________米.2.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?3.如图是宽为20m,长为32m的矩形耕地,要修筑同样宽的三条道路(互相垂直),把耕地分成六块大小相等的试验地,要使试验地的面积为570m2,问:道路宽为多少米?4.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示),(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,这一想法能实现吗?请说明理由.5.列方程(组)解应用题:某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.题组C培优拔尖练1.李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.2.已知两条线段长分别是一元二次方程的两根,(1)解方程求两条线段的长.(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积.(3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积.3.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论