




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省娄底市实验中学2023-2024学年九年级数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.平面直角坐标系内,已知线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,将线段AB扩大为原来的2倍后得到对应线段,则端点的坐标为()A.(4,4) B.(4,4)或(-4,-4) C.(6,2) D.(6,2)或(-6,-2)2.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3cm,那么PP′的长为()A. B. C. D.3.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()A. B. C. D.4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是()A. B.2 C.6 D.85.运动会的领奖台可以近似的看成如图所示的立体图形,则它的左视图是()A. B.C. D.6.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,点是轴正半轴上的一点,当时,则点的纵坐标是()A.2 B. C. D.7.已知反比例函数的图象经过点,则的值是()A. B. C. D.8.在下列图形中,是中心对称图形而不是轴对称图形的是()A.圆 B.等边三角形 C.梯形 D.平行四边形9.如图,在中,点为边中点,动点从点出发,沿着的路径以每秒1个单位长度的速度运动到点,在此过程中线段的长度随着运动时间的函数关系如图2所示,则的长为()A. B. C. D.10.下列二次根式是最简二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为______.(结果保留)12.如图,在平面直角坐标系中,点A是函数图象上的点,AB⊥x轴,垂足为B,若△ABO的面积为3,则的值为__.13.已知,.且,设,则的取值范围是______.14.如图,在中,,是三角形的角平分线,如果,,那么点到直线的距离等于___________.15.关于x的一元二次方程有两个不相等的实数根,则实数a的取值范围是______.16.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发,以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为__________秒.17.如图,在中,,按以下步骤作图:在上分别截取使分别以为圆心,以大于的长为半径作弧,两弧在内交于点③作射线交于点,则_______.18.在Rt△ABC中,∠C=90°,若AC=3,AB=5,则cosB的值为__________.三、解答题(共66分)19.(10分)已知二次函数.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.20.(6分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.21.(6分)如图,在中,,点在边上,经过点和点且与边相交于点.(1)求证:是的切线;(2)若,求的半径.22.(8分)如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为____.23.(8分)如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积.24.(8分)(2015德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.25.(10分)在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次为分,分,分,分.马老师将九年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在分及其以上的人数是_______人;(2)补全下表中、、的值:平均数(分)中位数(分)众数(分)方差一班二班(3)学校准备在这两个班中选一个班参加市级科学素养竞赛,你建议学校选哪个班参加?说说你的理由.26.(10分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=10cm,P为BC的中点,动点Q从点P出发,沿射线PC方向以cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t秒.(1)当t=2.5s时,判断直线AB与⊙P的位置关系,并说明理由.(2)已知⊙O为Rt△ABC的外接圆,若⊙P与⊙O相切,求t的值.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据位似图形的性质只要点的横、纵坐标分别乘以2或﹣2即得答案.【详解】解:∵原点O为位似中心,将线段AB扩大为原来的2倍后得到对应线段,且A(2,2)、B(3,1),∴点的坐标为(4,4)或(﹣4,﹣4).故选:B.【点睛】本题考查了位似图形的性质,属于基础题型,正确分类、掌握求解的方法是解题关键.2、D【分析】由题意易证,则有,进而可得,最后根据勾股定理可求解.【详解】解:∵△ABC是等腰直角三角形,∴∠BAC=90°,AB=AC,∵将△ABP绕点A逆时针旋转后,能与△ACP′重合,∴,∵AP=3cm,∴,∵,∴,即,∴是等腰直角三角形,∴;故选D.【点睛】本题主要考查旋转的性质及等腰直角三角形的性质与判定,熟练掌握旋转的性质及等腰直角三角形的性质与判定是解题的关键.3、D【分析】根据第三个图形是三角形的特点及折叠的性质即可判断.【详解】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【点晴】此题主要考查矩形的折叠,解题的关键是熟知折叠的特点.4、B【解析】根据垂径定理,构造直角三角形,连接OC,在RT△OCE中应用勾股定理即可.【详解】试题解析:由题意连接OC,得OE=OB-AE=4-1=3,CE=CD==,CD=2CE=2,故选B.5、D【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:由左视图的定义知该领奖台的左视图如下:故选D.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到的线用虚线表示.6、D【分析】首先过点B作BD⊥AC于点D,设BC=a,根据直线解析式得到点A、B坐标,从而求出OA、OB的长,易证△BCD≌△ACO,再根据相似三角形的对应边成比例得出比例式,即可解答.【详解】解:过点B作BD⊥AC于点D,设BC=a,∵直线与轴、轴分别交于点、,∴A(-2,0),B(0,1),即OA=2,OB=1,AC=,∵,∴AB平分∠CAB,又∵BO⊥AO,BD⊥AC,∴BO=BD=1,∵∠BCD=∠ACO,∠CDB=∠COA=90°,∴△BCD≌△ACO,∴,即a:=1:2解得:a1=,a2=-1(舍去),∴OC=OB+BC=+1=,所以点C的纵坐标是.故选:D.【点睛】本题考查相似三角形的判定与性质、角平分线的性质的综合运用,解题关键是恰当作辅助线利用角平分线的性质.7、A【分析】把代入反比例函数的解析式即可求解.【详解】把代入得:k=-4故选:A【点睛】本题考查的是求反比例函数的解析式,掌握反比例函数的图象和性质是关键.8、D【解析】解:选项A、是中心对称图形,也是轴对称图形,故此选项错误;选项B、不是中心对称图形,是轴对称图形,故此选项错误;选项C、不是中心对称图形,是轴对称图形,故此选项错误;选项D、是中心对称图形,不是轴对称图形,故此选项正确;故选D.9、C【分析】根据图象和图形的对应关系即可求出CD的长,从而求出AD和AC,然后根据图象和图形的对应关系和垂线段最短即可求出CP⊥AB时AP的长,然后证出△APC∽△ACB,列出比例式即可求出AB,最后用勾股定理即可求出BC.【详解】解:∵动点从点出发,线段的长度为,运动时间为的,根据图象可知,当=0时,y=2∴CD=2∵点为边中点,∴AD=CD=2,CA=2CD=4由图象可知,当运动时间x=时,y最小,即CP最小根据垂线段最短∴此时CP⊥AB,如下图所示,此时点P运动的路程DA+AP=所以此时AP=∵∠A=∠A,∠APC=∠ACB=90°∴△APC∽△ACB∴即解得:AB=在Rt△ABC中,BC=故选C.【点睛】此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及性质和勾股定理是解决此题的关键.10、C【解析】根据最简二次根式的定义逐项分析即可.【详解】A.=3,故不是最简二次根式;B.=,故不是最简二次根式;C.,是最简二次根式;D.=,故不是最简二次根式;故选C.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,象这样的二次根式叫做最简二次根式.二、填空题(每小题3分,共24分)11、【解析】根据菱形的性质得到AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°∴AO=AB=1,由勾股定理得,又∵AC=2,BD=2,∴调影部分的面积为:故答案为:【点睛】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.12、-6【解析】根据反比例函数k的几何性质,矩形的性质即可解题.【详解】解:由反比例函数k的几何性质可知,k表示反比例图像上的点与坐标轴围成的矩形的面积,∵△ABO的面积为3,由矩形的性质可知,点A与坐标轴围成的矩形的面积=6,∵图像过第二象限,∴k=-6.【点睛】本题考查了反比例函数k的几何性质,属于简单题,熟悉性质内容是解题关键.13、【分析】先根据已知得出n=1-m,将其代入y中,得出y关于m的二次函数即可得出y的范围【详解】解:∵∴n=1-m,∴∵,∴,∴当m=时,y有最小值,当m=0时,y=1当m=1时,y=1∴故答案为:【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的性质是解题的关键14、1【分析】作DE⊥AB于E,如图,利用勾股定理计算出BC=5,再根据角平分线的性质得DC=DE,然后利用面积法得到×5,从而可求出DE.【详解】作DE⊥AB于E,如图,
在Rt△ABC中,BC==5,
∵AD是三角形的角平分线,
∴DC=DE,
∵S△ACD+S△ABD=S△ABC,
∴×5,
∴DE=1,
即点D到直线AB的距离等于1.
故答案为1.【点睛】此题考查角平分线的性质,解题关键在于掌握角的平分线上的点到角的两边的距离相等.15、且【解析】由关于x的一元二次方程有两个不相等的实数根,即可得判别式,继而可求得a的范围.【详解】关于x的一元二次方程有两个不相等的实数根,,解得:,方程是一元二次方程,,的范围是:且,故答案为:且.【点睛】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.16、3【分析】首先利用t表示出CP和CQ的长,根据四边形PQBC是平行四边形时CP=BQ,据此列出方程求解即可.【详解】解:设运动时间为t秒,如图,则CP=12-3t,BQ=t,四边形PQBC为平行四边形12-3t=t,解得:t=3,故答案为【点睛】本题考查了平行四边形的判定及动点问题,解题的关键是化动为静,分别表示出CP和BQ的长,难度不大.17、【分析】由已知可求BC=6,作,由作图知平分,依据知,再证得可知BE=2,设,则,在中得,解之可得答案.【详解】解:如图所示,过点作于点,由作图知平分,,,,,,,∴,∵在中,,,设,则在中∴,解得:,即,故选:.【点睛】本题综合考查了角平分线的尺规作图及角平分线的性质、勾股定理等知识,利用勾股定理构建方程求解是解题关键.18、【分析】先根据勾股定理求的BC的长,再根据余弦的定义即可求得结果.【详解】由题意得则故答案为:点睛:勾股定理的应用是初中数学极为重要的知识,与各个知识点联系极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.三、解答题(共66分)19、(1)或;(2)C点坐标为:(0,3),D(2,-1);(3)P(,0).【分析】(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可.(2)把m=2,代入求出二次函数解析式,利用配方法求出顶点坐标以及图象与y轴交点即可.(3)根据两点之间线段最短的性质,当P、C、D共线时PC+PD最短,利用相似三角形的判定和性质得出PO的长即可得出答案.【详解】解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入得:,解得:m=±1.∴二次函数的解析式为:或.(2)∵m=2,∴二次函数为:.∴抛物线的顶点为:D(2,-1).当x=0时,y=3,∴C点坐标为:(0,3).(3)存在,当P、C、D共线时PC+PD最短.过点D作DE⊥y轴于点E,∵PO∥DE,∴△COP∽△CED.∴,即,解得:∴PC+PD最短时,P点的坐标为:P(,0).20、(1)画图见解析;(2)画图见解析;(3)20【解析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1B1A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1B1A2是正方形,AA1=,所以四边形AA1B1A2的面积为:=20,故答案为20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.21、(1)见解析;(2)【分析】(1)连接,根据等腰三角形的性质得到,求得,根据三角形的内角和得到,于是得到是的切线;(2)连接,推出是等边三角形,得到,求得,得到,于是得到结论.【详解】(1)证明:连接,∵,∴,∵,∴,∴,∴,∴是的切线;(2)解:连接,∵,∴是等边三角形,∴,∴,∴,∴,∴的半径.【点睛】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.22、或.【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=7-x,又折叠图形可得AD=AD′=5,∴x2+(7-x)2=25,解得x=3或1,即MD′=3或1.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7-3=1,D′N=5-3=2,EN=1-a,∴a2=22+(1-a)2,解得a=,即DE=,②当MD′=1时,AM=7-1=3,D′N=5-1=1,EN=3-a,∴a2=12+(3-a)2,解得a=,即DE=.故答案为:或.【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.23、周长=32,面积=32.【分析】由在菱形ABCD中,∠ABC=60°,可得△ABC是等边三角形,又由对角线AC=1,即可求得此菱形的边长,进而可求出菱形的周长,再根据菱形的面积等于对角线乘积的的一半即可求出其面积.【详解】∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC=1.∴菱形ABCD的周长=4×1=32,∵BO==4,∴BD=2BO=1,∴菱形ABCD的面积=×1×=32.【点睛】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.24、(1)面料的单价为3元/米,里料的单价为2元/米;(2)①5;②5%.【分析】(1)、设里料的单价为x元/米,面料的单价为(2x+10)元/米,根据成本为1元列出一元一次方程,从而得出答案;(2)、设打折数为m,根据利润不低于4元列出不等式,从而得出m的值;(3)、设vip客户享受的降价率为x,根据题意列出分式方程,从而得出答案【详解】解:(1)、设里料的单价为x元/米,面料的单价为(2x+10)元/米.根据题意得:0.5x+1.2(2x+10)=1.解得:x=2.2x+10=2×2+10=3.答:面料的单价为3元/米,里料的单价为2元/米.(2)、设打折数为m.根据题意得:13×﹣1﹣14≥4.解得:m≥5.∴m的最小值为5.答:m的最小值为5.(3)、13×0.5=12元.设vip客户享受的降价率为x.根据题意得:,解得:x=0.05经检验x=0.05是原方程的解.答;vip客户享受的降价率为5%.【点睛】本题考查(1)、分式方程的应用;(2)、一元一次方程的应用;(3)、不等式的应用,正确理解题目中的等量关系是解题关键25、(1);(2);;;(3)见解析.【分析】(1)根据条形统计图得到参赛人数,然后根据扇形统计图求得C级的百分率,即可求出成绩在80分及以上的人数;(2)由上题中求得的总人数分别求出各个成绩段的人数,然后可以求得平均数、中位数、众数;(3)根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京视觉艺术职业学院《智能科学数学基础》2023-2024学年第二学期期末试卷
- 高考冲刺倒计时100天主题班会
- 湖北省鄂州市吴都中学2024-2025学年高考生物试题命题比赛模拟试卷(23)含解析
- 商丘学院《临床寄生虫学与检验》2023-2024学年第一学期期末试卷
- 湘潭市岳塘区2024-2025学年数学五年级第二学期期末综合测试试题含答案
- 上海应用技术大学《虚拟仪器技术》2023-2024学年第二学期期末试卷
- 湖南大众传媒职业技术学院《工科数学分析(下)》2023-2024学年第二学期期末试卷
- 江苏医药职业学院《中级法语I》2023-2024学年第一学期期末试卷
- 四川中医药高等专科学校《医学数据挖掘课程设计》2023-2024学年第一学期期末试卷
- 山东石油化工学院《智慧建造与物联网》2023-2024学年第二学期期末试卷
- 个人车辆抵押协议书
- 中国矿产资源集团大数据有限公司招聘考试真题2024
- 八年级英语下学期期中模拟卷(宿迁专用)(原卷版)
- 杭州市市级机关事业单位招聘真题2024
- 2025年科普知识竞赛题及答案(共100题)
- 地下混凝土水池蓄水试验方案20240401
- 2025年北京卫生职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年河南推拿职业学院单招职业技能考试题库含答案
- 深基坑工程施工中的自动化设备应用
- 烟草公司办公楼物业服务方案
- 口腔保健科普讲座(幼儿园)课件
评论
0/150
提交评论