人教A文科数课时试题及解析(6)合情推理与演绎推理_第1页
人教A文科数课时试题及解析(6)合情推理与演绎推理_第2页
人教A文科数课时试题及解析(6)合情推理与演绎推理_第3页
人教A文科数课时试题及解析(6)合情推理与演绎推理_第4页
人教A文科数课时试题及解析(6)合情推理与演绎推理_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE6课时作业(六十二)[第62讲合情推理与演绎推理][时间:45分钟分值:100分]eq\a\vs4\al\co1(基础热身)1.设f0(x)=sinx,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x),n∈N,则f2009(x)=()A.sinxB.-sinxC.cosxD.-cosx2.下面几种推理过程是演绎推理的是()A.两条直线平行,同旁内角互补,由此若∠A,∠B是两条平行直线被第三条直线所截得的同旁内角,则∠A+∠B=180°B.某校高三(1)班有55人,高三(2)班有54人,高三(3)班有52人,由此得出高三所有班人数超过50人C.由平面三角形的性质推测空间四面体的性质D.在数列{an}中,a1=1,an=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(an-1+\f(1,an-1)))(n≥2),由此归纳出{an}的通项公式3.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为n=(1,-2)的直线(点法式)方程为:1×(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比以上方法,在空间直角坐标系中,经过点A(1,2,3)且法向量为n=(-1,-2,1)的平面(点法式)方程为:________________________________________________________________________.4.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第五个等式应为________________________________.eq\a\vs4\al\co1(能力提升)5.下列推理是归纳推理的是()A.A,B为定点,a>0且为常数,动点P满足||PA|-|PB||=2a<|AB|,则PB.由a1=1,an=3n+1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆eq\f(x2,a2)+eq\f(y2,b2)=1的面积S=πabD.三角形ABC一条边的长度为4,该边上的高为1,那么这个三角形的面积为26.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如图K62-1),则第七个三角形数是()图K62-1A.21B.28C.32D.367.设函数f(x)=eq\f(1,2x+\r(2)),类比课本推导等差数列前n项和公式的推导方法计算f(-4)+f(-3)+…+f(0)+f(1)+…+f(4)+f(5)的值为()A.eq\f(3\r(2),2)B.eq\f(5\r(2),2)C.eq\f(9\r(2),2)D.eq\f(\r(2),2)8.把正整数按一定的规则排成了如下所示的三角形数表.设aij(i,j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a42=8.若aij=2009,则i与j的和为()eq\x(\a\al(1,24,357,681012,911131517,141618202224))A.105B.106C.107D.1089.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是()A.1B.2C.3D10.半径为r的圆的面积S(r)=πr2,周长C(r)=2πr,若将r看作(0,+∞)上的变量,则(πr2)′=2πr①,①式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于①的式子:②________,②式可以用语言叙述为:________________________________________________________________________.11.如图K62-2,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2),如此继续下去,得图(3)……图K62-2试用n表示出第n个图形的边数an=________.12.设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,________,________,eq\f(T16,T12)成等比数列.13.设f(x)定义如表,数列{xn}满足x1=5,xn+1=f(xn),则x2011的值为________.x123456f(x)45126314.(10分)观察①sin210°+cos240°+sin10°cos40°=eq\f(3,4);②sin26°+cos236°+sin6°cos36°=eq\f(3,4).由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.15.(13分)蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图K62-3为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n个图的蜂巢总数.(1)试给出f(4),f(5)的值,并求f(n)的表达式(不要求证明);(2)证明:eq\f(1,f1)+eq\f(1,f2)+eq\f(1,f3)+…+eq\f(1,fn)<eq\f(4,3).图K62-3eq\a\vs4\al\co1(难点突破)16.(12分)某少数民族的刺绣有着悠久的历史,如图K62-4(1)、图(2)、图(3)、图(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成的,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(1)求出f(5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;(3)求eq\f(1,f1)+eq\f(1,f2-1)+eq\f(1,f3-1)+…+eq\f(1,fn-1)的值.图K62-4

课时作业(六十二)【基础热身】1.C[解析]f1(x)=(sinx)′=cosx,f2(x)=(cosx)′=-sinx,f3(x)=(-sinx)′=-cosx,f4(x)=(-cosx)′=sinx,f5(x)=(sinx)′=cosx=f1(x),f6(x)=(cosx)′=-sinx=f2(x),fn+4(x)=…=…=fn(x),故可猜测fn(x)是以4为周期的函数,有f4n+1(x)=f1(x)=cosx,f4n+2(x)=f2(x)=-sinx,f4n+3(x)=f3(x)=-cosx,f4n+4(x)=f4(x)=sinx.故f2009(x)=f1(x)=cosx,故选C.2.A[解析]A是演绎推理,B、D是归纳推理,C是类比推理.故选A.3.x+2y-z-2=0[解析]设B(x,y,z)为平面内的任一点,由eq\o(AB,\s\up6(→))·n=0得(-1)×(x-1)+(-2)×(y-2)+1×(z-3)=0,即x+2y-z-2=0.4.5+6+7+8+9+10+11+12+13=81[解析]因为1=1第一个式子左边1个数,右边1;2+3+4=9第二个式子左边3个数,从2开始加,加3个连续整数,右边3的平方;3+4+5+6+7=25第三个式子左边5个数,从3开始加,加5个连续整数,右边5的平方;4+5+6+7+8+9+10=49第四个式子左边7个数,从4开始加,加7个连续整数,右边7的平方,故第五个式子为5+6+7+8+9+10+11+12+13=81.【能力提升】5.B[解析]从S1,S2,S3猜想出数列的前n项和Sn,是从特殊到一般的推理,所以B是归纳推理.6.B[解析]观察这一组数的特点:a1=1,an-an-1=n,∴an=eq\f(nn+1,2),∴a7=28.7.B[解析]∵f(x)=eq\f(1,2x+\r(2)),∴f(-x)=eq\f(1,2-x+\r(2))=eq\f(2x,1+\r(2)·2x),f(x+1)=eq\f(1,2x+1+\r(2))=eq\f(1,\r(2)1+\r(2)·2x),则f(-x)+f(x+1)=eq\f(2x,1+\r(2)·2x)+eq\f(1,\r(2)1+\r(2)·2x)=eq\f(1+\r(2)·2x,\r(2)1+\r(2)·2x)=eq\f(\r(2),2),∴f(-4)+f(5)=f(-3)+f(4)=f(-2)+f(3)=f(-1)+f(2)=f(0)+f(1)=eq\f(\r(2),2),∴原式的值为eq\f(\r(2),2)×5=eq\f(5\r(2),2).故选B.8.C[解析]由三角形数表可以看出其奇数行为奇数列,偶数行为偶数列,2009=2×1005-1,所以2009为第1005个奇数,又前31个奇数行内数的个数的和为961,前32个奇数行内数的个数的和为1024,故2009在第32个奇数行内,所以i=63,因为第63行的第一个数为2×962-1=1923,2009=1923+2(m-1),所以m=44,即j=44,所以i+j=107.9.C[解析]因为2011=5×402+1,则2011∈[1],结论①正确;因为-3=5×(-1)+2,则-3∈[2],结论②不正确;因为所有的整数被5除的余数为0,1,2,3,4五类,则Z=[0]∪[1]∪[2]∪[3]∪[4],结论③正确;若整数a,b属于同一“类”[k],可设a=5n1+k,b=5n2+k(n1,n2∈Z),则a-b=5(n1-n2)∈[0];反之,若a-b∈[0],可设a=5n1+k1,b=5n2+k2(n1,n2∈Z),则a-b=5(n1-n2)+(k1-k2)∈[0];∴k1=k2,则整数a,b属于同一“类”,结论④正确,故选C.10.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3)πR3))′=4πR2球的体积函数的导数等于球的表面积函数11.3×4n-1[解析]a1=3,a2=12,a3=48,可知an=3×4n-1.12.eq\f(T8,T4)eq\f(T12,T8)[解析]通过类比,若等比数列{bn}的前n项积为Tn,则T4,eq\f(T8,T4),eq\f(T12,T8),eq\f(T16,T12)成等比数列.此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力.13.5[解析]由条件知x1=5,x2=f(x1)=f(5)=6,x3=f(x2)=f(6)=3,x4=f(x3)=f(3)=1,x5=f(x4)=f(1)=4,x6=f(x5)=f(4)=2,x7=f(x6)=f(2)=5=x1,可知{xn}是周期为6的周期数列,所以x2011=x1=5.14.[解答]观察40°-10°=30°,36°-6°=30°,由此猜想:sin2α+cos2(30°+α)+sinα·cos(30°+α)=eq\f(3,4).证明:sin2α+cos2(30°+α)+sinα·cos(30°+α)=eq\f(1-cos2α,2)+eq\f(1+cos60°+2α,2)+eq\f(1,2)[sin(30°+2α)-sin30°]=1+eq\f(1,2)[cos(60°+2α)-cos2α]+eq\f(1,2)eq\b\lc\[\rc\](\a\vs4\al\co1(sin30°+2α-\f(1,2)))=1+eq\f(1,2)[-2sin(30°+2α)sin30°]+eq\f(1,2)eq\b\lc\[\rc\](\a\vs4\al\co1(sin30°+2α-\f(1,2)))=eq\f(3,4)-eq\f(1,2)sin(30°+2α)+eq\f(1,2)sin(30°+2α)=eq\f(3,4).15.[解答](1)f(4)=37,f(5)=61.由于f(2)-f(1)=7-1=6,f(3)-f(2)=19-7=2×6,f(4)-f(3)=37-19=3×6,f(5)-f(4)=61-37=4×6,…因此,当n≥2时,有f(n)-f(n-1)=6(n-1),所以f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1)]+1=3n2-3n+1.又f(1)=1=3×12-3×1+1,所以f(n)=3n2-3n+1.(2)证明:当k≥2时,eq\f(1,fk)=eq\f(1,3k2-3k+1)<eq\f(1,3k2-3k)=eq\f(1,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,k-1)-\f(1,k))).所以eq\f(1,f1)+eq\f(1,f2)+eq\f(1,f3)+…+eq\f(1,fn)<1+eq\f(1,3)eq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)-\f(1,3)))+…+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,n-1)-\f(1,n))))),=1+eq\f(1,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,n)))<1+eq\f(1,3)=eq\f(4,3).【难点突破】16.[解答](1)f(5)=41.(2)由题图可知f(2)-f(1)=4=4×1,f(3)-f(2)=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论