




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级数学上册《第十四章勾股定理》单元测试卷及答案(华东师大版)
一、选择题
1.下列各组数据中是勾股数的是()
A.0.3,0.4,0.5B.32,4?,52
111
C.9,12,15D.一,一,—
345
2.有一直角三角形纸片,NC=9(TBC=6,AC=8,现将△ABC按如图那样折叠,使点A与点B
rc7C7c
A.2A/7B.—C.—D.4
42
3.在△ABC中,NA、NB、NC的对边分别为a、b、c,下列条件中,能判断△ABC是直角三角
形的是()
A.a=32,b=42,c=52B.a=b,ZC=45°
C.ZA:ZB:ZC=6:8:10D.a=百,b=币,c=2
4.在^ABC中,已知43=4,BC=5和AC="i,则下列说法正确的是()
A.△ABC是锐角三角形B.△ABC是直角三角形且=90
C.△ABC是钝角三角形D.△ABC是直角三角形且/8=90
5.要说明命题“若a2>b2,则a>b”是假命题,能举的一个反例是()
A.a=3,b=2B.a-3,b=2
C.a-=3,b=-1D.a=-1,b=3
6.如图,在△ABC中,AB=AC=10,BC=12,AD平分NBAC,则AD等于()
BDC
A.6B.7C.8D.9
7.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长是
9cm,则图中所有正方形的面积的和是()
B.81cm2C.\62cm2D.243C77?
8.将直角三角形的三条边长做如下变化,得到的新三角形仍是直角三角形的是()
A.同加一个相同的数B.同减一个相同的数
C.同乘以一个相同的正整数D.同时平方
9.如图,在.ABC中=点P为内一点,连接Q4、PB、PC且NA尸8w/A尸C
求证:PBxPC用反证法证明时,第一步应假设()
A.AB^ACB.PB=PC
C.ZAPB=ZAPCD.ZPBC^ZPCB
10.如图,圆柱的底面周长是24,高是5,—只在A点的蚂蚁沿侧面爬行,想吃到B点的食物,需
要爬行的最短路径是()
24=
13C.14D.-----h5
兀
二、填空题
11.若直角三角形的斜边长为灰,一条直角边长为1,则另一条直角边长为.
12.如图,每个小正方形的边长为1,则NABC的度数为度.
13.反证法证明命题“同旁内角不互补的两条直线不平行”时,应先假
设.
14.如图是某滑雪场U型池的示意图,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中
间可供滑行部分的截面是半径为3的半圆,其边缘43=8=16,点E在上,CE=4一名滑雪
爱好者从A点滑到E点时,他滑行的最短路程约为(兀取3).
三'解答题
15.如图,在.ABC中,AB=AC,AD平分/BAC,已知BC=10,AD=12,求AC的长.
16.如图,在,ABC中,D为A6边上一点,已知AC=13,CD=12,AD=5,AB=BC.请判断
的形状,并求出的长.
17.求证:对顶角相等(请画出图形,写出已知、求证、证明.)
18.一个零件的形状如图所示,按规定NB4C应为直角,工人师便测得NADC=90。,AD=3,
CD=4,AB=12,BC=13请你帮他看一下,这个零件符合要求吗?为什么.
四、综合题
19.如图,在,ABC中N84C=60°,NB=45°且AZ>是NBA。的平分线,且AC=26
。“_143于点",交AO于点。.
C
(1)求证:AC。是等腰三角形;
(2)求线段3。的长.
20.如图,.ABC的三边分别为AC=5,BC=12和A8=13,如果将ABC沿AD折叠,使AC
恰好落在A8边上.
(2)求线段CD的长.
21.综合与实践
美丽的弦图中蕴含着四个全等的直角三角形.
图1图2图3
(1)如图1,弦图中包含了一大一小两个正方形,已知每个直角三角形较长的直角边为a,较短
的直角边为b,斜边长为C,结合图1,试验证勾股定理;
(2)如图2,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(实线)的周长为24
OC=3求该飞镖状图案的面积;
(3)如图3,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正
方形MNKT的面积分别为乐S2,S3,若E+S2+S3=42,求S2的值.
答案解析部分
L【答案】C
【解析】【解答】解:A、不是正整数,故不是勾股数,不符合题意;
B、(32)2+(42)V(52)2,故不是勾股数,不符合题意;
C、92+122=152,三边是整数,同时能构成直角三角形,故正确,符合题意;
D、不是正整数,故不是勾股数,不符合题;
故答案为:C.
【分析】勾股数就是可以构成一个直角三角形三边的一组正整数,据此判断.
2.【答案】B
【解析】【解答】解:在RtAACB中,AC=8,BC=6
AB=VAC2+5C2=762+82=18
根据翻折不变性得△EDA丝ZXEDB
.*.EA=EB
.•.在RtABCE中,设CE=x,则BE=AE=8-x
.-.BE2=BC2+CE2
(8-x)2=62+x2
7
解得X~T-
4
故答案为:B.
【分析】在RIAACB中,利用勾股定理算出AB,根据折叠性质得EA=EB,在RsBCE中,设
CE=x,则BE=AE=8-x,利用勾股定理建立方程,求解可得x的值,从而得出答案.
3.【答案】D
222
【解析】【解答】解:A、...42+^=337,/=625Aa+h^c,不是直角三角形,故A不符
合题意;
1QQ
B、a=b,ZC=45°.*.ZA=ZB=-------------=67.5°,不是直角三角形,故B不符合题意;
♦°-4502
C、ZA:ZB:/C=6:8:10,解得/^=180。*3=75。,不是直角三角形,故C不符合题意;
24
D、•••<)[),.♦.是直角三角形,NB是直角,故D符合题意
故答案为:D.
【分析】A、分别计算a2+b2和c2的值,是否满足a2+b2=c2,根据勾股定理的逆定理即可判断求解;
B、由等边对等角可得NA=NB,然后用三角形内角和定理可判断求解;
C、由三角形内角和定理并结合/A、NB、NC的比值计算即可判断求解;
D、分别计算a?+b2和c2的值,是否满足a?+b2=c2,根据勾股定理的逆定理即可判断求解.
4.【答案】D
【解析】【解答】解:由题意知回2=16,3。2=25和402=41
,/AB2+BC2=AC2
ABC是直角三角形,且/8=90°
故答案为:D.
【分析】利用勾股定理的逆定理逐项判断即可。
5.【答案】B
【解析】【解答】解:A、32>22,且3>2,不能作为反例,故A不符合题意;
B、(-3)2>22,但一3<2,能作为反例,故B符合题意;
C、32>(-1)2,且3>-1,不能作为反例,故C不符合题意;
D、(-1)2<32,不能作为反例,故D不符合题意.
故答案为:B.
【分析】作为反例,要满足条件但不能得到结论,然后根据这个要求对各选项进行判断即可.
6.【答案】C
【解析】【解答】解::AB=AC,AD平分/BAC
AADIBC,BD=DC=2BC=6
2?22
在RtAABD中,AD=VAB-BD=710-6=8
故答案为:C.
【分析】根据等腰三角形的性质可得AD1_BC,BD=DC=,BC=6,然后利用勾股定理进行计算.
2
7.【答案】D
【解析】【解答】解:如图所示,根据勾股定理可知
S正方形2+S正方形3=S正方形i=92=81
S正方形A+S正方形E=S正方形2
S正方形c+S正方形。=S正方形3
则S正方形c+S正方形。+S正方形A+S正方形£=S正方形I
贝USjE方形[+止方形2+S正方形3+S正方形c+S正方形o+S正方形A+SJE方形£=3s正方形I=3x9.=3x81=243(cm~),故答案为:
D.
【分析】利用勾股定理可得
2
S正方形]+正方形2+S正方形3+S正方形c+S正方形+S正方形A+S正方形E=3s正方形]=3x9?=3x8]=243(cw)。
8.【答案】C
【解析】【解答】解:设直角三角形的三边长分别为:a,b,c(斜边)
cr-vb1=c2
若三边都加上(或减去)同一个m,则三边分别为。±勿2h±mc±m
此时(a±/n)2+(/?±m)2w(c±m)2
AA,B不符合题意;
若三边都乘以n(n为正整数),则三边分别为助bncn
(加)2+(加7=(/=(C72)2
・••此时三角形还是直角三角形,故C符合题意;
若三边都平方,则三边分别为:/修c2
...㈤匕年+哈⑷+.丫
故D不符合题意;
故答案为:C.
【分析】设直角三角形的三边长分别为:a,b,c(斜边),则a2+b2=c2,若三边都加上(或减去)同
一个m,则三边分别为a±m,b±m,c±m,此时(a±m)2+(b±m)2,(c±m)2,据此判断A、B;同理可判断
CD.
9.【答案】B
【解析】【解答】解:假设PB=PC
在^APB和^APC中
AB=AC,PB=PC,AP=AP
APB丝△APC
,NAPB=NAPC
与已知/APBr/APC相矛盾
假设结论不成立
APB^PC成立.
二用反证法证明时,第一步应假设B成立.
故答案为:B.
【分析】利用反证法的书写要求求解即可。
10.【答案】B
【解析】【解答】解:该圆柱的侧面展开图,如下图所示
根据两点之间线段最短,可知沿着侧面需要爬行的最短路径即为AB
A6恰为一个矩形的对角线,该矩形的长为圆柱的底面周长的一半
即长为24+2=12,宽为5
...AB=V52+122=13
即沿着侧面需要爬行的最短路径长为13.
故答案为:B.
【分析】将立体几何转换为平面几何,再利用勾股定理求出AB的长即可。
11.【答案】75
【解析】【解答】解:•••直角三角形的斜边长为遥,一条直角边长为1
/.另一条直角边长为“府—F=石
故答案为:75.
【分析】直接利用勾股定理计算即可求出另一条直角边的长.
12.【答案】45
【解析】【解答】解:连接AC
由勾股定理得:AC2=22+12=5
BC2=22+12=5
AB2=l2+32=10
二AC2+BC2=5+5=1O=BA2
/.△ABC是等腰直角三角形,ZACB=90°
,NABC=45°
故答案为:45.
【分析】连接AC,利用勾股定理求出AC2+BC2=5+5=10=BA2,再利用勾股定理的逆定理可得
△ABC是等腰直角三角形,ZACB=90°,从而得解。
13.【答案】同旁内角不互补的两条直线平行
【解析】【解答】解:由题意可得,反证法证明命题“同旁内角不互补的两条直线不平行''时,应先假
设同旁内角不互补的两条直线平行
故答案为:同旁内角不互补的两条直线平行.
【分析】用反证法证明的第一步为假设结论不成立,故只需找出不平行的反面即可.
14.【答案】15
【解析】【解答】解:将半圆面展开可得,如图所示:
•.•滑行部分的斜面是半径为3的半圆
,AD=—X2KX3=3TI®9
2
VAB=CD=\6CE=4
:.£)E=16—4=12
在RLADE中
AE=\IAD2+DE2=A/92+122=15-
故答案为:15.
【分析】将立体几何转化为平面几何,再利用勾股定理求出AE的长即可。
15.【答案】解:AB=AC,AD平分/BAC
BD=CD」BC=5
AD±BC2
AD=12
..AC=VAD2+CD2=V122+52=13
故AC的长为13.
【解析】【分析】根据等腰三角形的三线合一得ADLBC,BD=CD=5在RsACD中,利用勾股定
理算出AC的长即可.
16.【答案】解:在AACZ)中
:m+C/y=5?+122=169AC2=132=169
AD2+CD2=AC2
....AC。是直角三角形,且NA0C=9O°;
在RtABCD中CO=12,AB=3C=5+30即8。=5c—5
BD2+CD2=BC2,EP(BC-5)2+122=BC2
解得:BC=16.9.
【解析】【分析】先利用勾股定理逆定理证明NADC=9()。,再利用勾股定理可得
(BC-5>+122=802,最后求出80=16.9即可。
17.【答案】解:已知:如图,直线AB与CD交于点O.
AD
求i正:ZI=Z2.
证明::AB、CD相交于0(已知)
.•.Zl+Z3=l80°,Z2+Z3=180。(邻补角的定义)
.•.N1=N2(同角的补角相等)
【解析】【分析】首先根据命题写出题设:两个角为对顶角;写出结论:两个角相等。将题设作为已
知条件,求证的内容为结论,进行证明即可。
18.【答案】解:这个零件符合要求,理由如下:
VZADC^90°,AD=3,CD=4
•■AC7cbi+AD?=5
.•.AB=12,BC=13
二AC2+AB2=BC2
乙ABC是直角三角形
Zfi4C=90°
故这个零件符合要求.
【解析】【分析】利用勾股定理先求出AC=5,再求出ABC是直角三角形,最后判断求解即
可。
19.【答案】(1)证明:VZBAC=60°,ZB=45°
ZACB=180°-ZBAC-ZB=180o-60°-45o=75°
VAD平分NCAB
.-.ZCAD=-ZCAB=30°
2
,NADC=180°-NCAD-NACD=180°-30°-75°=75°
/.ZADC=ZACB
.\AC=AD
/.△ACD是等腰三角形
(2)解:过点D作DELAB于点E
.•.ZAED=ZDEB=90°
在RtAADE中,ZDAE=30°
.•.DE=-AD=-AC=V3
22
,:NB=NEDB=45°
/.DE=BE=V3;
/.DE2+BE2=BD2
/.3+3=BD2
解之:BD=46
.•.BD的长为"
【解析】【分析】(1)利用三角形的内角和定理求出/ACB的度数;再利用角平分线的定义求出
NCAD的度数,再利用三角形的内角和定理求出NADC的度数,由此可证得/ADC=NACB,利用
等角对等边可得到AC=AD,即可证得结论.
(2)过点D作DE_LAB于点E,可得到NAED=NDEB=90。,在RtAADE中,利用30。角所对的
直角边等于斜边的一半,可求出DE的长,利用等腰直角三角形的性质可求出BE的长,然后利用勾
股定理求出B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学语文《半截蜡烛》解析
- 2019-2025年教师招聘之中学教师招聘高分通关题型题库附解析答案
- 统编版2024-2025学年语文三年级下册第八单元达标测评卷(含答案)
- 用微课学 图形图像处理(Photoshop CS6)课件全套 倪彤 项目1-6 基本操作 -UI界面设计
- 福建省福州市第三中学2025届高三下学期第十四次质量检测语文试卷(含答案)
- 小学生家庭教育讲座
- 教育行业安全卫生守则
- 培训管理知识课件
- 交通运输行业培训
- 教育机构筹办计划书
- 物理-安徽省安庆市2024-2025学年高三下学期第二次模拟考试试卷(安庆二模)试题和答案
- 律师尽职调查工作方案
- 开关柜防凝露施工方案
- 2024年杭州市粮食收储有限公司招聘考试真题
- 新质生产力:学术研究与前沿探索
- 5.1 人民代表大会:我国的国家权力机关 课件高中政治统编版必修三政治与法治
- 邢台2025年河北邢台市高层次人才引进1025人笔试历年参考题库附带答案详解
- 2025年统计学 1试题及答案
- 2024年江苏省苏州市新区中考一模语文试卷
- 出国留学申请单位推荐意见表
- 附表1:西南石油大学大型仪器设备有偿使用收费标准清单
评论
0/150
提交评论