版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档
北师大版七年级下册数学培优压轴题
-•解答题(共8小题)
1已知四边形ABCC中,AB=BCZABC=120,ZMBN=60,ZMBh绕B点旋转,它的两边分别交
ADDC(或它们的延长线)于E,F.当NMBN绕B点旋转到AE=CF寸(如图1),易证AE+CF二E;当NMBN
绕B点旋转到AE/CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给
予证明;若不成立,线段AECF,EF又有怎样的数量关系?请写出你的猜想,不需证明.
2.(1)如图,在四边形ABCDhAB=ADZB=ZD=90,E、F分别是边BCCD上的点,且NEAF=「NBAD
求证:EF=BE+FD
(2)如图,在四边形ABCDhAB=ADZB+ZD=180,E、F分别是边BCCD上的点,
且NEAF号NBAD(1)中的结论是否仍然成立?
⑶如图,在四边形ABCD中,AB=ADZB+ZADC=180,E、F分别是边BCCD延长线上的点,
精品文档
且NEAFiZBAD(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数
量关系,并证明.
3.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中NC=90,ZB=ZE=30°
(1)操作发现:如图2,固定△ABC使ZxDEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段
DE与AC的位置关系是;
②设△BDC的面积为S,△AEC的面积为S,则S,与S的数量关系是.
B⑥
H102
(2)猜想论证:当ZxDEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S与S2的数量关系仍
然成立,并尝试分别作出了△BDCffiAAEC中BCCE边上的高,请你证明小明的猜想.
(3)拓展探究:已知NABC=60,点D是角平分线上一点,BD=CD=QE//AB交BC于点E(如图4)•
若在射线BA上存在点F,使SADCF=SXBD,请直接写出相应的BF的长.
精品文档
H3JH4
4.如图1,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以ARPB为边向线段AB
的同一侧作正△APC和正ZxPBD
精品文档
(1)_____________________________________________当ZxAPC与八PBD勺面积之和取最小值
时,AP;(直接写结果)
(2)连接ADBC相交于点Q,设NAQCa,那么a的大小是否会随点P的移动而变化?请说明理由;
(3)如图2,若点P固定,将aPBD绕点P按顺时针方向旋转(旋转角小于180。),此时a
的大小是否发生变化?(只需直接写出你的猜想,不必证明)
5.如图1,RtAABC中AB=AC点DE是线段AC上两动点,且AD=ECAM垂直BD垂足为MAM的延长线
交BC于点N,直线BD与直线NE相交于点F.试判断△DEF的形状,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来
(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或者更
换已知条件,完成你的证明.1、画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;2、
点K在线段BD上,且四边形AKNc为等腰梯形(AC//KN如图2).
附加题:如图3,若点DE是直线AC上两动点,其他条件不变,试判断ZxDEF的形状,并说明理由.
6.如图,已知等边三角形ABC中,点D,E,F分别为边AB,ACBC的中点,M为直线BC上一动点,
△DMNfe等边三角形(点M的位置改变时,△DMNfc随之整体移动).
(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE±?
精品文档
都请直接写出结论,不必证明或说明理由;
(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?
若成立,请利用图2证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断⑴的结论中EN与MF的数量
关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.
圄①
7.已知:等边三角形ABC(1)如图1,P为等边△ABC外一点,且NBPC=120・试猜想线段BR
PCAP之间的数量关系,并证明你的猜想;
⑵如图2,P为等边△ABC内一点,且NAPD=120.求证:PA+PD+PSBD
8.认真阅读材料,然后回答问题:
1
我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:G+h)=A+h
(a+b)2-a2+2ab+6,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,・・・
精品文档
F面我们依次对(a+b)"展开式的各项系数进一步研究发现,当n取正整数时可以单独列成表中的
形式:
(日也1...................................11
(a+b>?...................................121
[a+b)%...............................1331
(a+b>t..........................14641
(□+b)1=......15101051
(a+b>s..............1615201561
上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问
题:
(1)多项式(a+b)0的展开式是一个几次几项式?并预测第三项的系数;
(2)请你预测一下
多项式(a+b)”展开式的各项系数之和.__________________________________________
(3)结合上述材料,推断出多项式(a+b)”(n取正整数)的展开式的各项系数之和为S,(结果用
含字母n的代数式表示).
北师大版七年级下册数学培优压轴题参考答案与试题解析
1、【解答】VAB±AD,BC±CDAB=BCAE=CF
精品文档
ZA=ZC=90*,r•△ABE^ACBF(SAS;/-ZABE=ZCBFBE=BFVZABC=120,ZMBN=60
iAE=CF
•••ZABE=/CBF=30,AAE±BE,CF±BF;:/MBN=60,BE=BF;BEF为等边三角形;2
2
AAE+CF-BE±BF=BE=EjF
22
图2成立,图3不成立•证明图2.延长DC至点K,使CK=AE连接BK在ZxBAE和ZxBCK中,
rAB=CB
ZA=ZBCK=90”贝9ZxBAE^ABCKABE=BKZABEZKBCVZFBE=60,NABG=120,,AE=CK
ANFBC+ZABE=60,ANFBC+ZKBC=60,AZKBFZFBE=60,在ZXKBF和ZXEBF中,CBK=BE
ZKBF=ZEBKAKBF^AEBFAKF=EFAKC+CF=EF即AE+CF=EF
IBF=BF
图3不成立,AECF、EF的关系是AE-CF=EF
2.【解答】(1)延长EB至UG,使BG=DF连接AG
,AB=ADAAABWAADFAAG=AFZ1=Z2.
NBADANGAEZEAF又VAE=AEAEG^AEFAEG=EF
VEG=BE+BGAEF=BE+FD(1)中的结论EF=BE+F仍然成立.
⑶结论EF=BE+F不成立,应当是EF=BE-FD证明:在BE上截取Bq使BG=DF连接AG
vZB+ZADC=180,ZADF+ZADC=180,ANB=ZADFVAB=ADABG^ADF
ANBAGZDAFAG=AFANBAGZEADZDAFZEADZEAF二ZBAD
•••ZGAEZEAFVAE=AE^△AEG2AEF二EG=EF'EG=BEBG-EF=BE-FD
3・【解答】(7)@DEC绕点C旋转点D恰好落在AB边上,二AC=CP
VZBAC=90-ZB=90°-30°=60°,~AACD是等边三角形,•NACD=60,
精品文档
XvZCDEZBAC=60,•ZACDZCDE-~DE//Aq
②VNB=30°,ZC=90°,••CD=AC二AB-BD=AD=AC
根据等边三角形的性质,△ACD的边AGAD上的高相等,
•△BDC的面积和^AEq勺面积相等(等底等高的三角形的面积相等),
即S产S2;故答案为:DE//AqS=S;
(2)如图,・・・△DEC是由ZxABC绕点C旋转得到,・••BC=CEAC=CD
vZACNZBCN=90,ZDCMZBCN=180-90°=90°,•ZACNZDCMV在ZxACN^nADCM中,f
ZACN=ZDGnI
ZGffID=ZN=90:,・••△ACN^ADCM(AAS,■AN=DM
[AC=CD
•△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即$=$;
(3)如图,过点D作DF〃BE,易求四边形BEDF是菱形,所以BE=DF,
且BE、DF上的高相等,此时&DCF=S'E;过点D作DF±BDvZABC=60,FQ〃BE,
•ZF2FID=ZABC=60,VBF=DF,ZFiBD=-ZABC=30,ZHDB=90,ZFiDF=ZABC=60,
•△DFF2是等边三角形,・DF=DF,VBD=CDZABC=60,点D是角平分线上一点,
•ZDBCZDCB=X60°=30°,-ZCDF=180°-ZBCD=180-30°=150°,
ZCDF=360°-150°-60°=150°,•ZCDF=ZCDF,v在ZxCDF和ZxCDF中,
r
DFi=DF2
,ZCD?FZCEFZ,ZCDF^ACDF(SAS,・点Fz也是所求的点,LCD=CDvZABC=60,点D是角平分
线上一点,DE//AB-ZDBCZBDEZABD=X60°=30°,
又VBD=4•BEV8-X44-COS30°=24"加聆•BF]BFz=BF+FF21,
2233333
故BF的长为土二或二二.
33
精品文档
B
=X2—:ax+"a2,X=L7A=a时ZxAPC与△PBD勺面积之和取最小值,故答案为:a;
当三a
(2)a的大小不会随点P的移动而变化,理由:・・・△APC是等边三角形,•••PA=PCZ
APC=60,・・・△BDP是等边三角形,•••PB=PDZBPD=60,AZAPCZBPD/•ZAPDZ
CPB•••AAPD^ACPB•••ZPADZPCBvZQAPZQACZACP=120,
ZQCPZQACZACP=120,°•ZAQC=180一120°=60°
⑶此时a的大小不会发生改变,始终等于60°.理由:・・・△APC是等边三角形,
PA=PCZAPC=60BDP是等边三角形,二PB=PDZBPD=60,ANAPCZBPD
ZAPDZCPBAPD^CPB-ZPADZPCBvZQAPZQACZACP=120,
ZQCPZQACZACP=120,-ZAQC=180—120°=60°
5・【解答】△DEF是等腰三角形;证明:如图,过点C作CP±AC交AN延长线于点P
VRtAABC中AB=AC-ZBAC=90,ZACB=45-ZPCNZACBZBADZAGP
VAM±BD'ZABDZBAMZBAMZCAP=90;•••/ABDZCAP・△BAD^AAGP
-AD=CPZADBZP;VAD=CE-CE=CPVCN=CN・△CP『CEN
•ZP=ZCEN-ZCENZADB-ZFDEZFED•△DEF是等腰三角形.
附加题:/DEF为等腰三角形,•证明:过点C作CPLAC交AM的延长线于点P
VRtAABe中AB=AC-ZBAC=90,ZACB=45;-ZPCNZACBZECNVAMLBD
•ZABDZBAMZBAMZCAP=90ABDZCAP・△BADW八AGP-AD=CPZD=ZP;
VAD=ECCE=CP又VCN=CN・△CPN^ACEN-ZP=ZE;
-ND=ZE;A^DEF为等腰三角形.
精品文档
6.【解答】⑴判断:EN与MF相等(或EN=MF,点F在直线NE上,(2)成立.
连接DF,NF,证明△DBMFnaDFN全等(AAS,ABC是等边三角形,二AB=AC=BC又VD,E,F是三边的
中点,•••EF=DF=BFvZBDMZMDF=60,NFDNNMDF=60,•••ZBDMZFDN
rZBM=ZFBN
在ZxDBMfyDFN中,上U又二DFN,「・△DBM^ADFN二BM=FNNDFNZFDB=60,
DM=EN
••NF//BDVE,F分别为边ACBC的中点,•••EF是ZxABC的中位线,二EF〃BD
•••F在直线NE上,VBF=EF二MF=EN
⑶如图③,MF与EN相等的结论仍然成立(或MF=NE成立)・连接DFDE
由(2)知DE=DFNNDEZFDMDN=DM
rDE=DF
在aDN丽△DM冲,-ZNDE=ZFDM.•.△DNE^DMFMF=NE
DN=DK
1
7.【解答】AP=BP+PC(1)证明:延长BP至E,使PE=PC连接CEvZBPC=120,
•••ZCPE=60,又PE=PL△CPE为等边三角形,二CP=PE=CEZPCE=60,
••・△ABC为等边三角形,•••AC=BCZBCA=60,ANACBZPCE-ZACBZBCPZ
PCEZBCP即:NACPZBCE•△ACP^B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论