版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Projectone
DiscussiononthenatureofLegendrepolynomial
Abstract
LegendrepolynomialsarederivedbysolvingLegendre'sequations.Legendreequationisakindofdifferentialequationthatisoftenencounteredinphysicsandothertechnicalfields.Asearlyas1785,Legendrestudiedtheattractionbetweenspheresandthemotionofplanets.HeintroducedLegendre'sequationandobtaineditssolutionbymeansofseriessolution,whichwascalledLegendrepolynomial.Inthisproject,IwillexploreafewnicepropertiesofLegendrepolynomials,whicharethesimplestclassicalpolynomials.
Introduction
Legendrepolynomialsplayanimportantroleinpracticalmathematicalcalculation.Wecanuseittoprovemanyotherlawsandconclusionsmoreeasily.Andintheprocessofproving,wecanfindmoreperfectembodimentofmathematicalbeautyinmatrixtheory.Therefore,ourpaperonLegendrepolynomialsisveryimportantforustounderstandit.
MainResults
PART(a):Proofofthefollowingtheorem.
Theorem1 IfisasequenceofLegendrepolynomials,then
(i)formabasisfor.
(ii),i.e.,isorthogonaltoeverypolynomialofdegreelessthan.
Proof
(i)
SinceisasequenceofLegendrepolynomials,arelinearlyindependentlywitheachother.isapolynomialspaceofdimensionn,andtherearenlinearlyindependentpolynomials.Suchthateachpolynomialincanberepresentedby.
Henceformabasisfor.
(ii)
Letbeapolynomialin,sinceformabasisfor.Suchthatcanbewrittenintheformwhichis.Becauseisorthogonalto,isorthogonaltoeverypolynomialofdegreelessthan.
PART(b):Constructionfromdefinition.
Startingfromthepolynomial,useDefinition1toconstructthefirstfourLegendrepolynomials.
Weknowthatisasequenceoforthogonalpolynomials,sothatwhenever.Itcanbeobtainedfromtheabovethatforeachandforeach.
Wecanconstructanequationsetasfollows.
Suppose,and
Solvetheaboveequationset,.
Thensuppose,theequationsetis
Solvetheaboveequationset,.
Similartotheworkingabove,wecanobtainthat.
Hence,thefirstfourLegendrepolynomialswereconstructed.
PART(c):Constructionfromrecursionrelation.
Legendrepolynomialscanbegeneratedbythefollowingthreerecursiverelationships,
whereisdefinedtobezero.Checkthatthefirstfourpolynomialsdefinedbyabovearethepolynomialsinpartb.
Since,wecanobtain.Solvetheequation,then.
Thencalculatewithand
Solvetheequation,then.
Similartotheworkingabove,wecanobtainthat.
Hence,thefirstfourpolynomialsdefinedbyabovearethepolynomialsinpartb.
PART(d):Constructionfromthegeneratingfunction.
Let
ThefunctiondefinedaboveiscalledthegeneratingfunctionforLegendrepolynomials.Legendrepolynomialsarethecoefficientsintheexpansionofthisfunctioninpowersof.Expandasthepowerseriesinpowersof,andshowthatthefirstfourcoefficientsaregivenbypartb.
Fromthequestion,wecanobtainthat
ThecoefficientsofformLegendrepolynomials.Derivatewithonbothsidesoftheequation,weobtainthat
Organizetheaboveequation,weobtainthat
Comparativecoefficientoftheequation,weobtainthefollowingrecursiveformula
Itissamewiththerecursiveformulaweobtaininpartc.TakeTaylorexpansionof,weobtainthatand.
Withtherecursiveformulaand,weobtain,.
PART(e):Constructionfromcertaindifferentialequations.
ThegeneralformulaforLegendrepolynomialscanbewrittenas
Checkthatthefirstfourpolynomialsdefinedbyabovearethepolynomialinpartb.Verifythatthepolynomialgivenbyabovesatisfiesthefollowingdifferentialequationforeach:
or,equivalently,
whichariseswhenseparatingthevariablesinLaplace’sequationinsphericalcoordinates.
Withthefirstequation,weobtainthat
Hence,thefirstfourpolynomialsdefinedbyabovearethepolynomialinpartb.
Toverifythatthepolynomialgivenbyabovesatisfiesthefollowingdifferentialequationforeach.
PART(f):IntroductionofoneapplicationofLegendrePolynomials
WecanuseLegendrepolynomialstosolvethefixedsolutionofLaplaceEquation.
ThroughthestudyofLegendreequation,wegetthesolutionofLegendrepolynomialpowerseries.ItstudiessomenaturesofLegendrePolynominals.MakinguseofthenatureofLegendrePolynominals,itisveryeasytosolvethefixedsolutionofLaplaceEquation.ThismethodisobviouslybetterthanusinggreenfunctiontofindthefixedsolutionofLaplaceequation.
Laplace'sequation,alsoknownastheharmonicequationandthepotentialequation,isapartialdifferentialequation,soitisnamedafterLaplace,aFrenchmathematicianwhofirstproposedit.
ThroughthestudyofLegendrepolynomials,wefindmanypropertiesofLegendrepolynomials.InsolvingLaplace'sequation,thefollowingpropertiesareused.
Firstofall,property1:Legendrepolynomialshaveuniformexpressions.
Pnx=12nn!dn{(x2-1)n}dxn
Property2:Pnxisanevenfunctionwhenniseven;Whennisodd,Pnxistheoddfunction.
Property3:therecurrenceformulaforLegendrepolynomialsis
P'n+1x-xP'nx=(n+1)PnxxP'nx-P'n+1x=nPnx
Property4:Legendrepolynomialsareorthogonalontheinterval[-1,1].
Property5:thesquarerootof-11P2nxdxiscalledthemagnitudeoftheLegendrepolynomial.And
-11P2nxdx=22n+1
Byflexiblyapplyingtheabovefivecharacteristics,wecaneasilysolvethedefinitesolutionofLaplaceequation.
ConclusionandAckno
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物联网安全标准制定与推广-洞察分析
- 养老机构资产管理合同
- 2024年曲阳县中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 《语文植物的睡眠》课件
- 2025年牛津译林版七年级化学上册阶段测试试卷
- 2024年普洱哈尼族彝族自治县人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年人教新课标八年级历史上册月考试卷
- 2024年昆明延安医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年外研版六年级语文下册阶段测试试卷
- 燃气公司建设土方施工承包合同
- 新版出口报关单模板
- 北京市西城区师范学校附属小学北师大版数学六年级上册期末试题测试题及答案
- 杭州工地数字化施工方案
- 腾讯云大数据云平台TBDS 产品白皮书
- 网球国家二级裁判培训讲座
- 中南大学军事理论学习通超星课后章节答案期末考试题库2023年
- 员工工资条模板
- 缺点列举法课件
- 篮球专项体育课教学大纲、教学计划
- 创新与创业管理-四川大学中国大学mooc课后章节答案期末考试题库2023年
- 执行依据主文范文(通用4篇)
评论
0/150
提交评论