版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州市62023-2024学年数学九上期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣1 B.﹣3 C.5 D.12.若点A、B、C都在二次函数的图象上,则的大小关系为()A. B. C. D.3.如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.100m C.150m D.50m4.一元二次方程的解是()A.x1=2,x2=-2 B.x=-2 C.x=2 D.x1=2,x2=05.函数y=-x2-3的图象顶点是()A. B. C. D.6.已知:m=+1,n=﹣1,则=()A.±3 B.﹣3 C.3 D.7.如图,等腰直角三角形位于第一象限,,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是().A. B. C. D.8.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是()A. B. C. D.9.如图,菱形的边长是,动点同时从点出发,以的速度分别沿运动,设运动时间为,四边形的面积为,则与的函数关系图象大致为()A. B.C. D.10.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是()A.团队平均日工资不变 B.团队日工资的方差不变C.团队日工资的中位数不变 D.团队日工资的极差不变11.已知一个圆锥的母线长为30cm,侧面积为300πcm,则这个圆锥的底面半径为()A.5cm B.10cm C.15cm D.20cm12.如图,经过原点的⊙与轴分别交于两点,点是劣弧上一点,则()A.是锐角 B.是直角 C.是钝角 D.大小无法确定二、填空题(每题4分,共24分)13.如图,直线y=+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是_________.14.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了_____度.15.如图,已知二次函数顶点的纵坐标为,平行于轴的直线交此抛物线,两点,且,则点到直线的距离为__________16.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)17.如图,在矩形ABCD中,如果AB=3,AD=4,EF是对角线BD的垂直平分线,分别交AD,BC于点EF,则ED的长为____________________________.18.山西拉面,又叫甩面、扯面、抻面,是西北城乡独具地方风味的面食名吃,为山西四大面食之一.将一定体积的面团做成拉面,面条的总长度与粗细(横截面面积)之间的变化关系如图所示(双曲线的一支).如果将这个面团做成粗为的拉面,则做出来的面条的长度为__________.三、解答题(共78分)19.(8分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,与x轴相交于A、B两点(点A在点B的右侧),点A的坐标为(m,0),且AB=1.(1)填空:点B的坐标为(用含m的代数式表示);(2)把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,△ABP的面积为8:①求抛物线的解析式(用含m的代数式表示);②当0≤x≤1,抛物线上的点到x轴距离的最大值为时,求m的值.20.(8分)已知,关于x的方程(m﹣1)x2+2x﹣2=0为一元二次方程,且有两个不相等的实数根,求m的取值范围.21.(8分)如图,一块矩形小花园长为20米,宽为18米,主人设计了横纵方向的等宽小道路(图中阴影部分),道路之外种植花草,为了使种植花草的面积达到总面积的80%,求道路的宽度.22.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).⑴在平面直角坐标系中画出△ABC关于原点对称的△A1B1C1;⑵把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.请写出:①旋转角为度;②点B2的坐标为.23.(10分)如图,在中,,,.将绕点逆时针方向旋转60°得到,连接,求线段的长.24.(10分)如图,反比例函数的图象经过点,直线与双曲线交于另一点,作轴于点,轴于点,连接.(1)求的值;(2)若,求直线的解析式;(3)若,其它条件不变,直接写出与的位置关系.25.(12分)已知关于x的方程x2-(2k-1)x+k2-2k+3=0有两个不相等的实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,是否存在这样的实数k,使得|x1|-|x2|=成立?若存在,求出这样的k值;若不存在,请说明理由.26.如图示,在中,,,,求的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】把x=﹣1代入方程2x2﹣mx﹣3=0得到2+m﹣3=0,然后解关于m的方程即可.【详解】把x=﹣1代入方程2x2﹣mx﹣3=0得2+m﹣3=0,解得m=1.故选D.【点睛】本题考查了一元二次方程的解,熟知能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解决问题的关键.2、D【分析】根据反二次函数图象上点的坐标特征比较y1、y2、y3的大小,比较后即可得出结论.【详解】解:∵A()、B(2,)、C()在二次函数y=+k的图象上,∵y=+k的对称轴x=1,∴当x=0与x=2关于x=1对称,∵A,B在对称轴右侧,y随x的增大而增大,则y2>y1,C在对称轴左侧,且,则y3>y2,∴y3>y2>y1,故选:D.【点睛】本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标关于对称轴对称的特征比较y1、y2、y3的大小是解题的关键.3、A【解析】∵堤坝横断面迎水坡AB的坡比是1:,∴,∵BC=50,∴AC=50,∴(m).故选A4、A【分析】首先将原方程移项可得,据此进一步利用直接开平方法求解即可.【详解】原方程移项可得:,解得:,,故选:A.【点睛】本题主要考查了直接开平方法解一元二次方程,熟练掌握相关方法是解题关键.5、C【解析】函数y=-x2-3的图象顶点坐标是(0,-3).故选C.6、C【分析】先根据题意得出和的值,再把式子化成含与的形式,最后代入求值即可.【详解】由题得:、∴故选:C.【点睛】本题考查代数式求值和完全平方公式,运用整体思想是关键.7、D【解析】设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),△ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与△ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.解:∵,..又∵过点,交于点,∴,∴,∴.故选D.8、C【分析】根据列表法列出所有的可能情况,从中找出两个球颜色相同的结果数,再利用概率的公式计算即可得到答案.【详解】解:列表如图所示:由表可知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果所以摸出两个球颜色相同的概率是故选:C.【点睛】本题考查的是列表法与树状图的知识,解题的关键是能够用列表或者树状图将所有等可能结果列举出来.9、C【分析】根据题意可以求出各段对应的函数解析式,再根据函数解析式即可判断哪个选项是符合题意的,本题得以解决.【详解】解:∵菱形ABCD的边长为4cm,∠A=60°,动点P,Q同时从点A出发,都以1cms的速度分别沿A→B→C和A→D→C的路径向点C运动,
∴△ABD是等边三角形,
∴当0<x≤4时,
y=×4×4×sin60°−x•sin60°x=4−x2=x2+4;
当4<x≤8时,
y=×4×4×sin60°−×(8−x)×(8−x)×sin60°=−x2+4x−12=−(x−8)2+4;∴选项C中函数图像符合题意,故选:C.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,求出各段对应的函数解析式,利用数形结合的思想解答.10、B【解析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案.【详解】解:调整前的平均数是:=280;调整后的平均数是:=280;故A正确;调整前的方差是:=;调整后的方差是:=;故B错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,故C正确;调整前的极差是40,调整后的极差也是40,则极差不变,故D正确.故选B.【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.11、B【解析】设这个圆锥的底面半径为r,根据圆锥的侧面积公式可得π×r×30=300π,解得r=10cm,故选B.12、B【分析】根据圆周角定理的推论即可得出答案.【详解】∵和对应着同一段弧,∴,∴是直角.故选:B.【点睛】本题主要考查圆周角定理的推论,掌握圆周角定理的推论是解题的关键.二、填空题(每题4分,共24分)13、(1,3)【分析】首先根据直线AB求出点A和点B的坐标,结合旋转的性质可知点B′的横坐标等于OA与OB的长度之和,而纵坐标等于OA的长,进而得出B′的坐标.【详解】解:y=-x+4中,令x=0得,y=4;令y=0得,-x+4=0,解得x=3,∴A(3,0),B(0,4).
由旋转可得△AOB≌△AO′B′,∠O′AO=90°,
∴∠B′O′A=90°,OA=O′A,OB=O′B′,∴O′B′∥x轴,
∴点B′的纵坐标为OA长,即为3;横坐标为OA+O′B′=OA+OB=3+4=1.
故点B′的坐标是(1,3),
故答案为:(1,3).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.14、【分析】时钟上的分针匀速旋转一周需要60min,分针旋转了360°;求经过10分,分针的旋转度数,列出算式,计算即可.【详解】根据题意得,×360°=60°.故答案为60°.【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.15、1【分析】设出顶点式,根据,设出B(h+3,a),将B点坐标代入,即可求出a值,即可求出直线l与x轴之间的距离,进一步求出答案.【详解】由题意知函数的顶点纵坐标为-3,可设函数顶点式为,因为平行于轴的直线交此抛物线,两点,且,所以可设B(h+3,a).将B(h+3,a)代入,得所以点B到x轴的距离是6,即直线l与x轴的距离是6,又因为D到x轴的距离是3所以点到直线的距离:3+6=1故答案为1.【点睛】本题考查了顶点式的应用,能根据题意设出顶点式是解答此题的关键.16、大【解析】因为二次函数的开口向上,所以点M,N向上平移时,距离对称轴的距离越大,即MN的长度随直线向上平移而变大,故答案为:大.17、【分析】连接EB,构造直角三角形,设AE为,则,利用勾股定理得到有关的一元一次方程,即可求出ED的长.【详解】连接EB,
∵EF垂直平分BD,
∴ED=EB,
设,则,
在Rt△AEB中,
,
即:,
解得:.∴,
故答案为:.【点睛】本题考查了矩形的性质,线段的垂直平分线的性质和勾股定理,正确根据勾股定理列出方程是解题的关键.18、1【分析】因为面条的总长度y(cm)是面条粗细(横截面面积)x(cm2)反比例函数,且从图象上可看出过(0.05,3200),从而可确定函数式,再把x=0.16代入求出答案.【详解】解:根据题意得:y=,过(0.04,3200).
k=xy=0.04×3200=128,
∴y=(x>0),
当x=0.16时,
y==1(cm),
故答案为:1.【点睛】此题参考反比例函的应用,解题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.三、解答题(共78分)19、(1)(m﹣1,0);(3)①y=(x﹣m)(x﹣m+1);②m的值为:3+3或3﹣3或3≤m≤3.【分析】(1)A的坐标为(m,0),AB=1,则点B坐标为(m-1,0);(3)①S△ABP=•AB•yP=3yP=8,即:yP=1,求出点P的坐标为(1+m,1),即可求解;②抛物线对称轴为x=m-3.分x=m-3≥1、0≤x=m-3≤1、x=m-3≤0三种情况,讨论求解.【详解】解:(1)A的坐标为(m,0),AB=1,则点B坐标为(m﹣1,0),故答案为(m﹣1,0);(3)①S△ABP=AB•yP=3yP=8,∴yP=1,把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,此时,直线AP表达式中的k值为1,设:直线AP的表达式为:y=x+b,把点A坐标代入上式得:m+b=0,即:b=﹣m,则直线AP的表达式为:y=x﹣m,则点P的坐标为(1+m,1),则抛物线的表达式为:y=a(x﹣m)(x﹣m+1),把点P坐标代入上式得:a(1+m﹣m)(1+m﹣m+1)=1,解得:a=,则抛物线表达式为:y=(x﹣m)(x﹣m+1),②抛物线的对称轴为:x=m﹣3,当x=m﹣3≥1(即:m≥3)时,x=0时,抛物线上的点到x轴距离为最大值,即:(0﹣m)(0﹣m+1)=,解得:m=3或3±3,∵m≥3,故:m=3+3;当0≤x=m﹣3≤1(即:3≤m≤3)时,在顶点处,抛物线上的点到x轴距离为最大值,即:﹣(m﹣3﹣m)(m﹣3﹣m+1)=,符合条件,故:3≤m≤3;当x=m﹣3≤0(即:m≤3)时,x=1时,抛物线上的点到x轴距离为最大值,即:(1﹣m)(1﹣m+1)=,解得:m=3或3±3,∵m≤3,故:m=3﹣3;综上所述,m的值为:3+3或3﹣3或3≤m≤3.【点睛】本题考查的是二次函数知识的综合运用,涉及到图象旋转、一次函数基本知识等相关内容,其中(3)中,讨论抛物线对称轴所处的位置与0,1的关系是本题的难点.20、且【分析】由题意根据判别式的意义得到=22﹣4(m﹣1)×(﹣2)>0,然后解不等式即可.【详解】解:根据题意得=22﹣4(m﹣1)×(﹣2)>0且m﹣1≠0,解得且m≠1,故m的取值范围是且m≠1.【点睛】本题考查一元二次方程的定义以及一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.21、道路的宽度为2米.【分析】如图(见解析),小道路可看成由3部分组成,设道路的宽度为x米,利用长方形的面积公式建立方程求解即可.【详解】如图,小道路可看成由3部分组成,设道路的宽度为x米,道路1号的长为a,道路3号的长为b,则有依题意可列方程:整理得:,即解得:因为花园长为20米,所以不合题意,舍去故道路的宽度为2米.【点睛】本题考查了一元二次方程的实际应用,依据题意建立方程是解题关键.22、⑴详见解析;⑵①90;②(6,2)【分析】(1)分别得到点A、B、C关于x轴的对称点,连接点A1,B1,C1,即可解答;
(2)①根据点A,B,C的坐标分别求出AC,BC,AC的长度,根据勾股定理逆定理得到∠CAB=90°,即可得到旋转角;
②根据旋转的性质可知AB=AB2=3,所以CB2=AC+AB2=5,所以B2的坐标为(6,2).【详解】解:(1)A(3,2)、B(3,5)、C(1,2)关于x轴的对称点分别为A1(3,-2),B1(3,-5),C1(1,-2),
如图所示,
(2)①∵A(3,2)、B(3,5)、C(1,2),
∴AB=3,AC=2,BC=,∴,
∵AB2+AC2=13,
∴AB2+AC2=BC2,
∴∠CAB=90°,
∵AC与AC2的夹角为∠CAC2,
∴旋转角为90°;
②∵AB=AB2=3,
∴CB2=AC+AB2=5,
∴B2的坐标为(6,2).【点睛】本题考查了轴对称及旋转的性质,解答本题的关键是掌握两种几何变换的特点,根据题意找到各点的对应点.23、【分析】连BB',根据旋转的性质及已知条件可知△ABB'是等边三角形,进而得出∠CBB'=90°,再由勾股定理计算的长度即可.【详解】解:连BB'.∵∠ACB=90°,∠BAC=60°∴∠ABC=30°,AB=2AC=4,BC=由旋转可知:AB=AB',∠BAB'=60°∴△ABB'是等边三角形∴BB'=AB=4,∠ABB'=60°∴∠CBB'=90°∴B'C=【点睛】本题考查了旋转的性质、直角三角形的性质、等边三角形的性质,灵活运用旋转的性质是解题的关键.24、(1);
(2);(3)
BC∥AD.【分析】(1)将点A(-4,1)代入,求的值;(2)作辅助线如下图,根据和CH=AE,点D的纵坐标,代入方程求出点D的坐标,假设直线的解析式,代入A、D两点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论