版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省泰兴市2023-2024学年数学九上期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.用配方法解方程x2-4x+3=0时,原方程应变形为()A.(x+1)2=1 B.(x-1)2=1 C.(x+2)2=1 D.(x-2)2=12.如图,矩形的对角线交于点,已知,,下列结论错误的是()A. B. C. D.3.已知正多边形的边心距与边长的比为,则此正多边形为()A.正三角形 B.正方形 C.正六边形 D.正十二边形4.在平面直角坐标系中,点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图,在矩形中,在上,,交于,连结,则图中与一定相似的三角形是A. B. C. D.和6.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公路l的距离为()米.A.25 B. C. D.7.如图,一斜坡AB的长为m,坡度为1:1.5,则该斜坡的铅直高度BC的高为()A.3m B.4m C.6m D.16m8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.49.如图,反比例函数的图象经过点A(2,1),若≤1,则x的范围为()A.≥1 B.≥2 C.<0或≥2 D.<0或0<≤110.已点A(﹣1,y1),B(2,y2)都在反比例函数y=的图象上,并且y1<y2,那么k的取值范围是()A.k>0 B.k>1 C.k<1 D.k≠1二、填空题(每小题3分,共24分)11.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.12.写出一个以-1为一个根的一元二次方程.13.如图,在半径为的圆形铁片上切下一块高为的弓形铁片,则弓形弦的长为__________.14.若=,则的值为______.15.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)16.点(﹣4,3)关于原点对称的点的坐标是_____.17.使式子有意义的x的取值范围是____.18.如图,斜坡长为100米,坡角,现因“改小坡度”工程的需要,将斜坡改造成坡度的斜坡(、、三点在地面的同一条垂线上),那么由点到点下降了_________米(结果保留根号)三、解答题(共66分)19.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,延长BC至点D,使得DC=BC,直线DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:CD=CE;(2)若AC=2,∠E=30°,求阴影部分(弓形)面积.20.(6分)如图,在中,,是边上的中线,平分交于点、交于点,,.(1)求的长;(2)证明:;(3)求的值.21.(6分)某农户生产经销一种农副产品,已知这种产品的成本价为20元/kg,市场调查发现,在一段时间内该产品每天的销售量W(kg)与销售单价x(元/kg)有如下关系:W=,设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的销售利润最大?最大利润是多少?22.(8分)如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB=6,BC=(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.23.(8分)二次函数的部分图象如图所示,其中图象与轴交于点,与轴交于点,且经过点.求此二次函数的解析式;将此二次函数的解析式写成的形式,并直接写出顶点坐标以及它与轴的另一个交点的坐标.利用以上信息解答下列问题:若关于的一元二次方程(为实数)在的范围内有解,则的取值范围是________.24.(8分)如图,为的直径,直线于点.点在上,分别连接,,且的延长线交于点,为的切线交于点.(1)求证:;(2)连接,若,,求线段的长.25.(10分)如图,抛物线交轴于两点,交轴于点,点的坐标为,直线经过点.(1)求抛物线的函数表达式;(2)点是直线上方抛物线上的一动点,求面积的最大值并求出此时点的坐标;(3)过点的直线交直线于点,连接当直线与直线的一个夹角等于的2倍时,请直接写出点的坐标.26.(10分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据配方时需在方程的左右两边同时加上一次项系数一半的平方解答即可.【详解】移项,得
x2-4x=-3,配方,得
x2-2x+4=-3+4,即(x-2)2=1
,故选:D.【点睛】本题考查了一元二次方程的解法—配方法,熟练掌握配方时需在方程的左右两边同时加上一次项系数一半的平方是解题的关键.2、B【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、,故A选项正确;B、在Rt△ADC中,cos∠ACD=,∴cosβ=,∴AO=,故B选项错误;C、在Rt△BCD中,tan∠BDC=,∴tanβ=∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=,∴cosβ=∴,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键.3、B【分析】边心距与边长的比为,即边心距等于边长的一半,进而可知半径与边心距的夹角是15度.可求出中心角的度数,从而得到正多边形的边数.【详解】如图,圆A是正多边形的内切圆;∠ACD=∠ABD=90°,AC=AB,CD=BD是边长的一半,当正多边形的边心距与边长的比为,即如图有AB=BD,则△ABD是等腰直角三角形,∠BAD=15°,∠CAB=90°,即正多边形的中心角是90度,所以它的边数=360÷90=1.故选:B.【点睛】本题利用了正多边形与它的内切圆的关系求解,转化为解直角三角形的计算.4、D【分析】根据各象限内点的坐标特征进行判断即可得.【详解】因则点位于第四象限故选:D.【点睛】本题考查了平面直角坐标系象限的性质,象限的符号规律:第一象限、第二象限、第三象限、第四象限,熟记象限的性质是解题关键.5、B【解析】试题分析:根据矩形的性质可得∠A=∠D=90°,再由根据同角的余角相等可得∠AEB=∠DFE,即可得到结果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故选B.考点:矩形的性质,相似三角形的判定点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中半径常见的知识点,一般难度不大,需熟练掌握.6、B【详解】解:过点B作BE⊥AD于E.设BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,则,解得即小岛B到公路l的距离为,故选B.7、B【分析】首先根据题意作出图形,然后根据坡度=1:1.5,可得到BC和AC之间的倍数关系式,设BC=x,则AC=1.5x,再由勾股定理求得AB=,从而求得BC的值.【详解】解:∵斜坡AB的坡度i=BC:AC=1:1.5,AB=,
∴设BC=x,则AC=1.5x,∴由勾股定理得AB=,又∵AB=,∴=,解得:x=4,∴BC=4m.故选:B.【点睛】本题考查坡度坡角的知识,属于基础题,对坡度的理解及勾股定理的运用是解题关键.8、B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.9、C【解析】解:由图像可得,当<0或≥2时,≤1.故选C.10、B【分析】利用反比例函数的性质即可得出答案.【详解】∵点A(﹣1,y1),B(1.y1)都在反比例函数y=的图象上,并且y1<y1,∴k﹣1>0,∴k>1,故选:B.【点睛】本题考查反比例函数的图象上的点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(每小题3分,共24分)11、【解析】根据弧长公式可得:=,故答案为.12、答案不唯一,如【解析】试题分析:根据一元二次方程的根的定义即可得到结果.答案不唯一,如考点:本题考查的是方程的根的定义点评:解答本题关键的是熟练掌握方程的根的定义:方程的根就是使方程左右两边相等的未知数的值.13、【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【详解】解:如图,过O作OD⊥AB于C,交⊙O于D,
∵CD=4,OD=10,
∴OC=6,
又∵OB=10,
∴Rt△BCO中,BC=∴AB=2BC=1.
故答案是:1.【点睛】此题主要考查了垂径定理以及勾股定理,得出BC的长是解题关键.14、4【分析】由=可得,代入计算即可.【详解】解:∵=,∴,则故答案为:4.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.15、(答案不唯一)【分析】可设道路的宽为xm,将4块剩余矩形平移为一个长方形,长为(50-x)m,宽为(39-x)m.根据长方形面积公式即可列出方程.【详解】解:设道路的宽为xm,依题意有
(50-x)(39-x)=1.
故答案为:.【点睛】本题考查由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.解题关键是利用平移把4块试验田平移为一个长方形的长和宽.16、(4,﹣3)【解析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【详解】点(﹣4,3)关于原点对称的点的坐标是(4,﹣3).故答案为(4,﹣3).【点睛】本题考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数,比较简单.17、【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【详解】解:由题意得:x-1≥0,x-1≠0,
解得:x≥1,x≠1.
故答案为x≥1且x≠1.【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数、分母不为零.18、【分析】根据直角三角形的性质求出AC,根据余弦的定义求出BC,根据坡度的概念求出CD,结合图形计算,得到答案.【详解】在Rt△ABC中,∠ABC=30°,
∴AC=AB=50,BC=AB•cos∠ABC=50,
∵斜坡BD的坡度i=1:5,
∴DC:BC=1:5,
∴DC=10,
则AD=50-10,
故答案为:50-10.【点睛】此题考查解直角三角形的应用-坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)S阴=.【分析】(1)只要证明∠E=∠D,即可推出CD=CE;
(2)根据S阴=S扇形OBC-S△OBC计算即可解决问题;【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∵DC=BC,∴AD=AB,∴∠D=∠ABC,∵∠E=∠ABC,∴∠E=∠D,∴CD=CE.(2)解:由(1)可知:∠ABC=∠E=30°,∠ACB=90°,∴∠CAB=60°,AB=2AC=4,在Rt△ABC中,由勾股定理得到BC=2,连接OC,则∠COB=120°,∴S阴=S扇形OBC﹣S△OBC=.【点睛】考查扇形的面积,垂径定理,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1)13(2)证明见解析(3)【分析】(1)根据等腰三角形三线合一的性质可得,结合,可得,根据勾股定理列式求解即可;(2)根据直角三角形的斜边中线定理和等边对等角即可证明;(3)通过证明F是△ABC的重心,即可得,根据勾股定理求出BE的长度,即可在Rt△BEF中求出的值.【详解】(1)∵,平分交于点、交于点∴∵∴在Rt△ABE中,∴∵∴在Rt△ABE中,∴∵∴;(2)∵是边上的中线∴∴;(3)∵,平分交于点、交于点∴AE是BC边上的中线∵BD是AC边上的中线∴F是△ABC的重心∵∴∴∴在Rt△BEF中,∴.【点睛】本题考查了三角形的综合问题,掌握等腰三角形三线合一的性质、勾股定理、锐角三角函数、三角形重心的性质是解题的关键.21、(1);(2)当销售单价定为30元时每天的销售利润最大,最大利润是1元【分析】(1)每天的销售利润y=每天的销售量×每件产品的利润;
(2)根据(1)得到的函数关系式求得相应的最值问题即可.【详解】(1);∴y与x之间的函数关系式为;(2),∵,∴当时,y有最大值,其最大值为1.
答:销售价定为30元时,每天的销售利润最大,最大利润是1元.【点睛】本题考查了二次函数的实际应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法求得二次函数的最值问题是常用的解题方法.22、(1)见解析;(2)见解析;(3)【分析】(1)易求DF长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF,EF=2CE即可得;(3)先证明△OFG为等边三角形,△OPG为等边三角形,即可确定扇形圆心角∠POG和∠GOF的大小均为60°,所以两扇形面积相等,通过割补法得出最后阴影面积只与矩形OPDH和△OGF有关,根据面积公式求出两图形面积即可.【详解】(1)∵AF=AB=6,AD=BC=,∴DF=3,∴CF=DF=3,∴F是CD的中点(2)∵AF=6,DF=3,∴∠DAF=30°,∴∠EAF=30◦,∴AE=2EF;∴∠EFC=30◦,EF=2CE,∴AE=4CE(3)如图,连接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边三角形,同理△OPG为等边三角形,∴∠POG=∠FOG=60°,OH=,∴S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-S△OFG=,即图中阴影部分的面积.【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.23、(1)(2),顶点坐标为(2,-9),B(5,0)(3)【解析】(1)直接代入三个坐标点求解解析式;(2)利用配方法即可;(3)关于的一元二次方程的根,就是二次函数与的交点,据此分析t的取值范围.【详解】解:(1)代入A、D、C三点坐标:,解得,故函数解析式为:;(2),故其顶点坐标为(2,-9),当y=0时,,解得x=-1或5,由题意可知B(5,0);(3),故当时,-9≤y<0,故-9≤t<0.【点睛】本题第3问中,要理解t是可以取到-9这个值的,只有x=-1和x=3这两个端点对应的y值是不能取的.24、(1)详见解析;(2)【分析】(1)根据切线的性质得,由切线长定理可证,从而,然后根据等角的余角相等得到,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.【详解】(1)证明:∵是的直径,∴(直径所对的圆周角是),∴,∴,∵是的直径,于点,∴是的切线(经过半径外端且与半径垂直的直线是圆的切线),∵是的切线,∴(切线长定理),∴,∵,,∴,∴,∵.(2)由(1)可知,是直角三角形,在中,,,根据勾股定理求得,在和中,∴(两个角对应相等的两个三角形相似),∴,∴,∴,∵,,∴是的中位线,∴(三角形的中位线平行于第三边并且等于第三边的一半).【点睛】本题考查了切线的判定与性质,等腰三角形的判定与性质,勾股定理,相似三角形得判定与性质,余角的性质,以及三角形的中位线等知识.熟练掌握切线的判定与性质、相似三角形得判定与性质是解答本题的关键.25、(1);(2)当时,有最大值,最大值为,点坐标为;(3)点的坐标或.【分析】(1)利用点B的坐标,用待定系数法即可求出抛物线的函数表达式;(2)如图1,过点P作轴,交BC于点H,设,H,求出的面积即可求解;(3)如图2,作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于,交AC于E,利用等腰三角形的性质和三角形外角性质得到,再确定N(3,−2),AC的解析式为y=5x−5,E点坐标为,利用两直线垂直的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版八年级物理下册《7.1力》同步测试题有答案
- 云南省昭通市2024年中考模拟预测数学模拟预测题附答案
- 科学育种技术优化作物抗病虫害能力
- 继续教育八大员施工员(设备安装)考试题目+答案资料
- 中国粮食生产现状及需求预测
- 高一化学巩固练习:第一章从实验学化学全章复习与巩固提高
- 2024届金昌市重点中学高考仿真卷化学试卷含解析
- 2024高中地理第2章区域可持续发展第5节矿产资源合理开发和区域可持续发展学案湘教版必修3
- 2024高中物理第三章传感器第一节认识传感器第二节传感器的原理达标作业含解析粤教版选修3-2
- 2024高中语文第5单元庄子蚜第5课恶乎往而不可训练含解析新人教版选修先秦诸子蚜
- 八年级散文阅读专题训练-八年级语文上册知识梳理与能力训练
- 2024年杭州市中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 经济职业技术学院教务教学管理制度汇编(2024年)
- 2024-2025学年人教版八年级数学上册期末测试模拟试题(含答案)
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之15:“6策划-6.4创新组合”(雷泽佳编制-2025B0)
- 2025混凝土外加剂买卖合同
- 《环境感知技术》2024年课程标准(含课程思政设计)
- 小学生科普人工智能
- 说明书ZWY-150(120)-45L煤矿用挖掘式装载机
- 《锅炉及锅炉房设备》课程设计北京市某燃煤厂区蒸汽锅炉房设计
- 单位局域网的建设—毕业论文
评论
0/150
提交评论