版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
模块三函数第一讲平面直角坐标系和函数知识梳理夯实基础知识点1:平面直角坐标系中点的坐标特征各象限内点的坐标特征点P(x,y)在第一象限点P(x,y)在第二象限点P(x,y)在第三象限点P(x,y)在第四象限坐标轴上的点的特征点P(x,y)在x轴上纵坐标为0,即点P(x,y)在y轴上横坐标为0,即点P(x,y)既在x轴上,又在y轴上原点(0,0)5、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上横纵坐标相等,即()点P(x,y)在第二、四象限夹角平分线上横纵坐标互为相反数,即()注意:坐标轴上的点不属于任何象限。6、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。7、点到坐标轴及原点的距离(1)点P(a,b)到x轴的距离等于(2)点P(a,b)到y轴的距离等于(3)点P(a,b)到原点的距离等于8、关于x轴、y轴或原点对称的点的坐标的特征点P(a,b)与关于x轴对称点的坐标为(a,-b)点P(a,b)与关于y轴对称点的坐标为(-a,b)点P(a,b)与关于原点对称点的坐标为(-a,-b)口诀:关于谁对称,谁不变,另一个变号,关于原点对称都变号9、点的平移点P(a,b)沿x轴向右(或向左)平移m个单位后对应点的坐标是;点P(a,b)沿y轴向上(或向下)平移n个单位后对应点的坐标是.口诀:横坐标右加左减,纵坐标上加下减.10、两点间的距离:在x轴或平行于x轴的直线上的两点(,),(,)间的距离为在y轴或平行于y轴的直线上的两点(,),(,)间的距离为任意两点(,),(,),则线段的中点坐标为 任意两点(,),(,),则线段知识点2:函数1、常量和变量在一个变化过程中,我们称数值发生变化的量为,数值始终不变的量为.【注意】①变量和常量是相对而言的,变化过程不同,它们可能发生改变,判断的前提条件是“在同一个变化过程中”,当变化过程改变时,同一个量的身份也可能随之改变.例如,在s=t中,当s一定时,v、t为变量,s为常量;当t一定时,s、v为变量,而t为常量.②“常量”是已知数,是指在整个变化过程中保持不变的量,不能认为式中出现的字母就是变量,如在一个匀速运动中的速度v就是一个常量.③变量、常量与字母的指数没有关系,如S=πr2中,变量是“S”和“r”,常量是“π”.④判断一个量是不是变量,关键是看其数值是否发生变化.2、函数的定义一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有的值与其对应,那么我们就说x是自变量,y是x的函数.例如:在s=60t中,有两个变量;s与t,当t变化时,s也随之发生变化,并且对于t在其取值范围内的每一个值,s都有唯一确定的值与之对应,我们就称t是自变量,s是t的函数.对函数定义的理解,主要抓住以下三点:①有两个变量.②函数不是数,函数的本质是对应,函数关系就是变量之间的对应关系,且是一种特殊的对应关系,一个变量的数值随着另一个变量数值的变化而变化.③函数的定义中包括了对应值的存在性和唯一性两重意思,即对自变量的每一个确定的值,函数有且只有一个值与之对应,对自变量x的不同取值,y的值可以相同,如:函数y=x2,当x=1和x=-1时,y的对应值都是1.④在某个变化过程中处于主导地位的变量即为自变量,随之变化且对应值有唯一确定性的另一个变量即为该自变量的函数.3、函数取值范围的确定使函数有意义的自变量的取值的全体叫做自变量的取值范围,函数自变量的取值范围的确定必须考虑两个方面:①不同类型的函数关系式中自变量取值范围的求解方法;②当用函数关系式表示实际问题时,自变量的取值不但要使函数关系式有意义,而且还必须使实际问题有意义.函数解析式形式自变量取值范围注:在实际问题中,自变量的取值范围应使该问题具有实际意义含有分式,如含有二次根式,如含有零次幂或负整数次幂,如或含有分式与二次根式含以上两种或两种以上形式分别求出它们的取值范围,再取公共部分4、函数解析式及函数值函数解析式:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式.①函数解析式是等式.②函数解析式中指明了哪个是自变量,哪个是函数,通常等式右边的代数式中的变量是自变量,等式左边的变量表示函数.③书写函数的解析式是有顺序的.y=2x-1表示y是x的函数,若x=2y-1,则表示x是y的函数,即求y关于x的函数解析式时,必须用含x的代数式表示y,也就是等式左边是一个变量y,右边是一个含x的代数式.④用数学式子表示函数的方法叫做解析式法.函数值:对于自变量x在取值范围内的某个确定的值a,函数y所对应的值为b,即当x=a,y=b时,b叫做自变量x的值为a时的函数值.5、函数的图象及其画法一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.画函数的图象,可以运用描点法,其一般步骤如下:①列表:表中列举一些自变量的值及其对应的函数值,自变量的取值不应使函数值太大或太小,以便于描点,点数一般以5到7个为宜.②描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点.描点时,要注意横、纵坐标的符号与点所在的象限(或坐标轴)之间的关系,描出的点大小要适中,位置要准确.③连线:按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来.6、函数的表示方法函数的表示方法一般有三种:解析式法、列表法和图象法,表示函数关系时,要根据具体情况选择适当的方法,有时为了全面地认识问题,需要几种方法同时使用.7、判断分析函数图象的突破点①明确“两轴”所表示的意义②明确图象上的点所表示的意义③弄清图象上的转折点,最高(低)点所表示的意义④弄清上升线和下降线所表示的意义直击中考胜券在握1.(2023·广东黄埔·一模)在平面直角坐标系中,点关于y轴对称的点的坐标为()A. B. C. D.【答案】C【分析】平面直角坐标系中任意一点,关于x轴的对称点的坐标是,关于y轴的对称点的坐标是,据此可以求得点关于y轴对称点的坐标.【详解】解:点关于y轴对称,对称点的坐标为,故选:C.【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.(2023·成都中考)在平面直角坐标系中,点关于x轴对称的点的坐标是()A. B. C. D.【答案】C【分析】关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,根据规律解答即可.【详解】解:点关于x轴对称的点的坐标是:故选:【点睛】本题考查的是关于轴对称的两个点的坐标关系,掌握“关于轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数.”是解题的关键.3.(2023·荆州中考)若点关干轴的对称点在第四象限,则的取值范围在数轴上表示为()A. B.C. D.【答案】C【分析】先根据题意求出点关于轴的对称点坐标,根据点在第四象限列方程组,求解即可.【详解】∵∴点关于轴的对称点坐标为∵在第四象限∴解得:故选:C【点睛】本题考查点关于坐标轴对称点求法,以及根据象限点去判断参数的取值范围,能根据题意找见相关的关系是解题关键.4.(2023·天津和平·八年级期末)已知点,,点,过点作轴的平行线交直线于点,则线段的长为()A. B. C. D.【答案】C【分析】先利用待定系数法求出直线AB的解析式,再求出点D坐标,进而可求出CD的长.【详解】解:设直线AB的解析式为y=kx+b,将A(﹣1,0)、B(0,﹣3)代入,得:,解得:,∴直线AB的解析式为y=﹣3x﹣3,∵点C(2,﹣2)且CD∥x轴交直线AB于点D,∴当y=﹣2时,由﹣2=﹣3x﹣3得:x=,∴D(,﹣2),∴CD=2﹣()=,故选:C.【点睛】本题考查待定系数法求一次函数的解析式、坐标与图形,熟练掌握待定系数法求函数的解析式的方法,求出点D坐标是解答的关键.5.(2023·无锡中考)函数y=的自变量x的取值范围是()A.x≠2 B.x<2 C.x≥2 D.x>2【答案】D【分析】根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】解:∵函数y=有意义,∴x-20,即x>2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.6.(2023·山西洪洞三模)蝶,通称为“蝴蝶”,属于节肢动物,体表具有分节的外骨骼,身体分为头、胸、腹三个部分,胸部长有两对翅膀,翅膀上各式各样的色彩上和斑纹是由翅膀上的鳞片组成.如图,是一只蝴蝶标本,已知表示蝴蝶两“翅膀尾部”、两点的坐标分别为,,则表示蝴蝶身体“尾部”点的坐标为()
A. B. C. D.【答案】A【分析】由表示蝴蝶两“翅膀尾部”、两点的坐标分别为,,找到坐标系,再读出“尾部”点坐标即可.【详解】解:该蝴蝶两“翅膀尾部”、两点的坐标分别为,,,可建立坐标系如图:则由图表示蝴蝶身体“尾部”点的坐标为,答案选A.【点睛】本题考查了平面直角坐标系的坐标的找法,正确确定坐标系是解题关键.7.(2023·广西二模)在平面直角坐标系中,有,两点,若轴,则A,B两点间的距离为()A.1 B.2 C.3 D.4【答案】A【分析】根据,则两点的纵坐标相等,求得,利用横坐标之差即可求解.【详解】,A,B两点间的距离为:.故选A.【点睛】本题考查了平面内点的位置的确定,平行于坐标轴的点的特点,两点之间的距离,理解平行于坐标轴的线段上点的特点是解题关键.8.如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,已知B(﹣3,0)、C(2,0),则点D的坐标为()A.(4,5) B.(5,4) C.(5,3) D.(4,3)【答案】B【分析】首先根据菱形的性质和点的坐标求出AD=AB=BC=5,再利用勾股定理求出OA的长度,进而得到点D的坐标.【详解】解:∵菱形ABCD的顶点A在y轴上,B(﹣3,0),C(2,0),∴AB=AD=BC,OB=3,OC=2,∴AB=AD=BC=OB+OC=5,∴AD=AB=CD=5,∴OA===4,∴点D的坐标为(5,4).故选:B.【点睛】本题主要考查菱形的性质及勾股定理,掌握菱形的性质和勾股定理是解题的关键.9.(2023年河北省唐山市路南区初中毕业升学数学三模试题)在平面直角坐标系中,点,,当线段最短时,的值为()A.5 B.3 C.4 D.0【答案】C【分析】根据两点之间的距离公式即可求得的值.【详解】解:根据两点之间的距离公式得∴当时,最小故答案为C.【点睛】此题考查了平面直角坐标系中动点问题,熟练掌握两点间的距离公式是解题的关键.10.(2023·重庆B卷)小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离y(单位:km)与时间t(单位:h)之间的对应关系.下列描述错误的是()A.小明家距图书馆3kmB.小明在图书馆阅读时间为2hC.小明在图书馆阅读书报和往返总时间不足4hD.小明去图书馆的速度比回家时的速度快【答案】D【分析】根据题意,首先分析出函数图象中每一部分所对应的实际意义,然后逐项分析即可.【详解】根据题意可知,函数图象中,0-1h对应的实际意义是小明从家到图书馆的过程,走过的路程为3km,故A正确;1-3h对应的实际意义是小明在图书馆阅读,即阅读时间为3-1=2h,故B正确;3h后直到纵坐标为0,对应的实际意义为小明从图书馆回到家中,显然,这段时间不足1h,从而小明在图书馆阅读书报和往返总时间不足4h,故C正确;显然,从图中可知小明去图书馆的速度为,回来时,路程同样是3km,但用时不足1h,则回来时的速度大于,即大于去时的速度,故D错误;故选:D.【点睛】本题考查函数图象与实际行程问题,理解函数图象所对应的实际意义是解题关键.11.(2023·菏泽中考)如图(1),在平面直角坐标系中,矩形在第一象限,且轴,直线沿轴正方向平移,在平移过程中,直线被矩形截得的线段长为,直线在轴上平移的距离为,、间的函数关系图象如图(2)所示,那么矩形的面积为()
A. B. C.8 D.10【答案】C【分析】根据平移的距离可以判断出矩形BC边的长,根据的最大值和平移的距离可以求得矩形AB边的长,从而求得面积【详解】如图:根据平移的距离在4至7的时候线段长度不变,可知图中,根据图像的对称性,,由图(2)知线段最大值为,即根据勾股定理矩形的面积为
故答案为:C【点睛】本题考查了矩形的面积计算,一次函数图形的实际意义,勾股定理,一次函数的分段函数转折点的意义;正确的分析函数图像,数形结合解决实际问题是解题的关键.12.(2023·赤峰中考)甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中甲、乙两人之间的距离(米)与乙出发的时间x(秒)之间的函数关系如图所示,正确的个数为()①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点12米;③甲、乙两人之间的距离超过32米的时间范围是;④乙到达终点时,甲距离终点还有68米.A.4 B.3 C.2 D.1【答案】B【分析】利用乙用80秒跑完400米求速度可判断①;利用甲先走3秒和12米求出甲速度,根据乙追甲相差12米求时间=12秒再求距起点的距离可判断②;利用两人间距离列不等式5(t-12)-4(t-12)32,和乙到终点,甲距终点列不等式4t+12400-32解不等式可判断③;根据乙到达终点时间,求甲距终点距离可判断④即可【详解】解:①∵乙用80秒跑完400米∴乙的速度为=5米/秒;故①正确;②∵乙出发时,甲先走12米,用3秒钟,∴甲的速度为米/秒,∴乙追上甲所用时间为t秒,5t-4t=12,∴t=12秒,∴12×5=60米,∴离开起点后,甲、乙两人第一次相遇时,距离起点60米;故②不正确;③甲乙两人之间的距离超过32米设时间为t秒,∴5(t-12)-4(t-12)32,∴t44,当乙到达终点停止运动后,4t+12400-32,∴t89,甲、乙两人之间的距离超过32米的时间范围是;故③正确;④乙到达终点时,甲距终点距离为:400-12-4×80=400-332=68米,甲距离终点还有68米.故④正确;正确的个数为3个.故选择B.【点睛】本题考查一次函数的图像应用问题,仔细阅读题目,认真观察图像,从图像中获取信息,掌握一次函数的图像应用,列不等式与解不等式,关键是抓住图像纵轴是表示两人之间的距离,横坐标表示乙出发时间,拐点的意义是解题关键.13.(2023·河南中考)如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为()A. B. C. D.【答案】C【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值.【详解】解:由图2可知,当P点位于B点时,,即,当P点位于E点时,,即,则,∵,∴,即,∵∴,∵点为的中点,∴,故选:C.【点睛】本题考查了学生对函数图像的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图像中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法.14.(2023·威海中考)如图,在菱形ABCD中,,,点P,Q同时从点A出发,点P以1cm/s的速度沿A﹣C﹣D的方向运动,点Q以2cm/s的速度沿A﹣B﹣C﹣D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是()A. B.C. D.【答案】A【分析】先证明∠CAB=∠ACB=∠ACD=60°,再分0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,求出函数解析式,根据二次函数、一次函数图象与性质逐项排除即可求解.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,ACD都是等边三角形,∴∠CAB=∠ACB=∠ACD=60°.如图1,当0≤x≤1时,AQ=2x,AP=x,作PE⊥AB于E,∴,∴,故D选项不正确;如图2,当1<x≤2时,CP=2-x,CQ=4-2x,BQ=2x-2,作PF⊥BC与F,作QH⊥AB于H,∴,,∴,故B选项不正确;当2<x≤3时,CP=x-2,CQ=2x-4,∴PQ=x-2,作AG⊥CD于G,∴,∴,故C不正确.故选:A【点睛】本题考查了菱形性质,等边三角形性质,二次函数、一次函数图象与性质,利用三角函数解三角形等知识,根据题意分类讨论列出函数解析式是解题关键.15.(2023·郴州中考)如图,在边长为4的菱形中,.点从点出发,沿路线运动.设点经过的路程为,以点,,为顶点的三角形的面积为,则下列图象能反映与的函数关系的是()A. B.C. D.【答案】A【分析】当点P在AB上运动时,过点P作AD上的高记作h,可得含30°角的直角三角形,根据含30°角直角三角形的性质可得AD边上的高h是AP的一半,即h=,再根据三角形面积公式列出面积表达式即可判断;当点P运动到B点时,过点B作BE⊥AD于点E,由题意易得,当点P在线段BC上时,△ADP的面积保持不变,当点P在CD上时,过点P作AD上的高记作h,可得含30°角的直角三角形,根据含30°角直角三角形的性质可得AD边上的高h是等于,即h=,再根据三角形面积公式列出面积表达式即可判断.【详解】解:当点P在AB上运动时,过点P作AD上的高记作h,由30°角所对直角边等于斜边一半,可推导h=,所以;过点B作BE⊥AD于点E,如图所示:∵边长为4的菱形中,,∴,∴∠ABE=30°,∴,∴,点P与点B重合时,△ADP的面积最大,最大为;当点P在线段BC上时,△ADP的面积保持不变,当点P在CD上时,过点P作AD上的高记作h,根据含30°角直角三角形的性质,可得AD边上的高h是等于,即h=,所以;∴综上可得只有A选项符合题意;故选A.【点睛】本题主要考查函数图象及菱形的性质、勾股定理,熟练掌握函数图象及菱形的性质、勾股定理是解题的关键.16.(2023·河南洛龙·七年级期中)在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点……,第次移动到点,则点的坐标是()A. B. C. D.【答案】B【分析】根据题意可得,,,,,,,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点的纵坐标,然后根据,,,,可得:,即可求解.【详解】解:由题意得:,,,,,,,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,∵,∴点的纵坐标为1,∵,,,,由此得:,∴.故选:B【点睛】本题主要考查了平面直角坐标系中点的坐标规律题——坐标与旋转,解题的关键是理解题意找出规律解答问题.17.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.【答案】A【详解】分析:根据定义可将函数进行化简.详解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选A.点睛:本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.18.(2023·扬州中考)在平面直角坐标系中,若点在第二象限,则整数m的值为_________.【答案】2【分析】根据第二象限的点的横坐标小于0,纵坐标大于0列出不等式组,然后求解即可.【详解】解:由题意得:,解得:,∴整数m的值为2,故答案为:2.【点睛】本题考查了点的坐标及解一元一次不等式组,记住各象限内点的坐标的符号是解决的关键.19.(2023·凉山州中考)函数中,自变量x的取值范围是______________.【答案】x≥-3且x≠0【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0列不等式组求解.【详解】解:根据题意得:x+3≥0且x≠0,解得x≥-3且x≠0.故答案为:x≥-3且x≠0.【点睛】本题考查了函数自变量的取值范围.考查的知识点为:分式有意义,分母不为0,二次根式有意义,被开方数是非负数.20.(2023·上海中考)已知,那么__________.【答案】.【分析】直接利用已知的公式将x的值代入求出答案.【详解】解:∵,∴,故答案为:.【点睛】本题主要考查了函数值,正确把已知代入是解题关键.21.(2023·山西中考)如图是一片枫叶标本,其形状呈“掌状五裂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学强化训练试卷A卷附答案
- 2024年度山西省高校教师资格证之高等教育法规模拟考试试卷B卷含答案
- 2024年家具成套生产线项目资金申请报告代可行性研究报告
- 2024年-2025年《农作物生产技术》综合知识考试题库及答案
- 2024专项产品线唯一供货商协议
- 儿童教育服务协议:2024定制
- 2024照明系统仓库安装协议条款
- 2024工程总承包深度合作协议
- 2024年赔偿问题解决协议模板
- 安全生产管理员的职责与权益明细协议
- EMR系统建设方案(通用)
- 水泵扬程计算表
- 股权赠与协议范本只享有分红权
- 数控铣床零件加工工艺分析与程序设计毕业论文
- 混凝土的几种本构模型
- 污泥石灰干化工艺的工程应用
- 第二课简单趋向补语:v+上下进出回过起PPT课件
- 机动车登记证书翻译件中英文模板(共2页)
- C++程序设计:第8章 数组
- 小学书法人美版五年级下册 第10课 广字头 课件(10张PPT)
- 两自一包体制改革策略应用案例探索
评论
0/150
提交评论