




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
28.1锐角三角函数第1课时正弦函数【教学目标】1.能根据正弦概念正确进行计算;(重点)2.能运用正弦函数解决实际问题.(难点)【教学过程】一、情境导入牛庄打算新建一个水站,在选择水泵时,必须知道水站(点A)与水面(BC)的高度(AB).斜坡与水面所成的角(∠C)可以用量角器测出来,水管的长度(AC)也能直接量得.二、合作探究探究点一:正弦函数如图,sinA等于()A.2B.eq\f(\r(5),5)C.eq\f(1,2)D.eq\r(5)解析:根据正弦函数的定义可得sinA=eq\f(1,2),故选C.方法总结:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=eq\f(∠A的对边,斜边)=eq\f(a,c).探究点二:正弦函数的相关应用【类型一】在网格中求三角函数值如图,在正方形网格中有△ABC,则sin∠ABC的值等于()A.eq\f(3\r(10),10)B.eq\f(\r(10),10)C.eq\f(1,3)D.10解析:∵AB=eq\r(20),BC=eq\r(18),AC=eq\r(2),∴AB2=BC2+AC2,∴∠ACB=90°,∴sin∠ABC=eq\f(AC,AB)=eq\f(\r(2),\r(20))=eq\f(\r(10),10).故选B.方法总结:解决有关网格的问题往往和勾股定理及其逆定理相联系,根据勾股定理求出三边长度,再运用勾股定理的逆定理判断三角形形状.【类型二】已知三角函数值,求直角三角形的边长在Rt△ABC中,∠C=90°,BC=4,sinA=eq\f(2,3),则AB的长为()A.eq\f(8,3)B.6C.12D.8解析:∵sinA=eq\f(BC,AB)=eq\f(4,AB)=eq\f(2,3),∴AB=6.故选B.方法总结:根据正弦定义表示出边的关系,然后将数值代入求解,记住定义是解决问题的关键.【类型三】三角函数与等腰三角形的综合已知等腰三角形的一条腰长为25cm,底边长为30cm,求底角的正弦值.解析:先作底边上的高AD,根据等腰三角形三线合一的性质得到BD=eq\f(1,2)BC=15cm,再由勾股定理求出AD,然后根据三角函数的定义求解.解:如图,过点A作AD⊥BC,垂足为D.∵AB=AC=25cm,BC=30cm,AD为底边上的高,∴BD=eq\f(1,2)BC=15cm.由勾股定理得AD=eq\r(AB2-BD2)=20cm,∴sin∠ABC=eq\f(AD,AB)=eq\f(20,25)=eq\f(4,5).方法总结:求三角函数值一定要在直角三角形中求值,当图形中没有直角三角形时,要通过作高,构造直角三角形解答.【类型四】在复杂图形中求三角函数值如图,在△ABC中,AD⊥BC于D,如果AD=9,DC=5,E为AC的中点,求sin∠EDC的值.解析:首先利用勾股定理计算出AC的长,再根据直角三角形的性质可得DE=EC,根据等腰三角形性质可得∠EDC=∠C,进而得到sin∠EDC=sin∠C=eq\f(AD,AC).解:∵AD⊥BC,∴∠ADC=90°,∵AD=9,DC=5,∴AC=eq\r(92+52)=eq\r(106).∵E为AC的中点,∴DE=AE=EC=eq\f(1,2)AC,∴∠EDC=∠C,∴sin∠EDC=sin∠C=eq\f(AD,AC)=eq\f(9,\r(106))=eq\f(9\r(106),106).方法总结:求三角函数值的关键是找准直角三角形或利用等量代换将角或线段转化进行解答.【类型五】在圆中求三角函数值如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=6,AC=8,求sin∠ABD的值.解析:首先根据垂径定理得出∠ABD=∠ABC,然后由直径所对的圆周角是直角,得出∠ACB=90°,根据勾股定理算出斜边AB的长,再根据正弦的定义求出sin∠ABC的值,从而得出sin∠ABD的值.解:由条件可知eq\o(AC,\s\up8(︵))=eq\o(AD,\s\up8(︵)),∴∠ABD=∠ABC,∴sin∠ABD=sin∠ABC.∵AB为直径,∴∠ACB=90°.在Rt△ABC中,∵BC=6,AC=8,∴AB=eq\r(BC2+AC2)=10,∴sin∠ABD=sin∠ABC=eq\f(AC,AB)=eq\f(4,5).方法总结:求三角函数值时必须在直角三角形中.在圆中,由直径所对的圆周角是直角可构造出直角三角形.三、板书设计1.正弦的定义;2.利用正弦解决问题.【教学反思】在教学过程中,重视过程,深化理解,通过学生的主动探究来体现他们的主体地位,教师是通过对学生参与学习的启发、调整、激励来体现自己的引导作用,对学生的主体意识和合作交流的能力起着积极作用.28.1锐角三角函数第1课时正弦函数目标导航:【学习目标】⑴经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。⑵能根据正弦概念正确进行计算【学习重点】理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实.【学习难点】当直角三角形的锐角固定时,,它的对边与斜边的比值是固定值的事实。【导学过程】一、自学提纲:1、如图在Rt△ABC中,∠C=90°,∠A=30°,BC=10m,求AB2、如图在Rt△ABC中,∠C=90°,∠A=30°,AB=20m,求BC二、合作交流:问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?思考1:如果使出水口的高度为50m,那么需要准备多长的水管?;如果使出水口的高度为am,那么需要准备多长的水管?;结论:直角三角形中,30°角的对边与斜边的比值思考2:在Rt△ABC中,∠C=90°,∠A=45°,∠A对边与斜边的比值是一个定值吗?如果是,是多少?结论:直角三角形中,45°角的对边与斜边的比值三、教师点拨:从上面这两个问题的结论中可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于,是一个固定值;当∠A=45°时,∠A的对边与斜边的比都等于,也是一个固定值.这就引发我们产生这样一个疑问:当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?探究:任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°,∠A=∠A′=a,那么有什么关系.你能解释一下吗?结论:这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比正弦函数概念:规定:在Rt△BC中,∠C=90,∠A的对边记作a,∠B的对边记作b,∠C的对边记作c.在Rt△BC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA==.sinA=例如,当∠A=30°时,我们有sinA=sin30°=;当∠A=45°时,我们有sinA=sin45°=.四、学生展示:例1如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值.随堂练习(1):做课本练习.随堂练习(2):1.三角形在正方形网格纸中的位置如图所示,则sinα的值是﹙﹚A.B.C.D.2.如图,在直角△ABC中,∠C=90o,若AB=5,AC=4,则sinA=()A.eq\f(3,5)B.eq\f(4,5)C.eq\f(3,4)D.eq\f(4,3)3.在△ABC中,∠C=90°,BC=2,sinA=eq\f(2,3),则边AC的长是()A.eq\r(,13)B.3C.eq\f(4,3)D.eq\r(,5)4.如图,已知点P的坐标是(a,b),则sinα等于()A.B.C.五、课堂小结:在直角三角形中,当锐角A的度数一定时,不管三角形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国餐饮连锁行业运营市场深度调查及投资策略研究报告
- 2025-2030年中国阿莫西林行业竞争现状及投资战略研究报告
- 2025-2030年中国镀层钢板市场运营态势与发展风险分析报告
- 2025-2030年中国酒石酸美托洛尔缓释片行业发展趋势及投资战略研究报告
- 2025-2030年中国运动服饰行业运行现状及发展前景趋势分析报告
- 2025-2030年中国西厨设备行业市场发展现状及前景趋势分析报告
- 2025-2030年中国营养保健食品市场发展状况及投资战略研究报告
- 病人转运合同范本
- 2025河北省安全员B证(项目经理)考试题库
- 2025年广东省安全员知识题库及答案
- 领导干部的国学修养讲义
- 05-第三章-环境污染物的生物转运和生物转化-生物转化幻灯片
- 公司精益改善项目推进管理制度及激励方案
- 工科高等数学(下)知到章节答案智慧树2023年上海海洋大学
- oppor11t刷全网通改全教程
- 儿童羽毛球教程
- 福建某机场二次雷达站基建工程施工组织设计
- 内部控制-仓储与存货循环调查问卷
- 流程成熟度模型(PEMM)
- 高二英语期末考试试卷质量分析报告
- 催化动力学分析法及其应用
评论
0/150
提交评论