《26.2 实际问题中的反比例函数》教案、导学案、同步练习_第1页
《26.2 实际问题中的反比例函数》教案、导学案、同步练习_第2页
《26.2 实际问题中的反比例函数》教案、导学案、同步练习_第3页
《26.2 实际问题中的反比例函数》教案、导学案、同步练习_第4页
《26.2 实际问题中的反比例函数》教案、导学案、同步练习_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

26.2实际问题与反比例函数第1课时实际问题中的反比例函数【教学目标】1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题;(重点)2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.(难点)【教学过程】一、情境导入小明和小华相约早晨一起骑自行车从A镇出发前往相距20km的B镇游玩,在返回时,小明依旧以原来的速度骑自行车,小华则乘坐公交车返回A镇.假设两人经过的路程一样,自行车和公交车的速度保持不变,且自行车速度小于公交车速度.你能找出两人返回时间与所乘交通工具速度间的关系吗?二、合作探究探究点:实际问题与反比例函数【类型一】反比例函数在路程问题中的应用王强家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v米/分,所需时间为t分钟.(1)速度v与时间t之间有怎样的函数关系?(2)若王强到单位用15分钟,那么他骑车的平均速度是多少?(3)如果王强骑车的速度最快为300米/分,那他至少需要几分钟到达单位?解析:(1)根据速度、时间和路程的关系即可写出函数的关系式;(2)把t=15代入函数的解析式,即可求得速度;(3)把v=300代入函数解析式,即可求得时间.解:(1)速度v与时间t之间是反比例函数关系,由题意可得v=eq\f(3600,t);(2)把t=15代入函数解析式,得v=eq\f(3600,15)=240.故他骑车的平均速度是240米/分;(3)把v=300代入函数解析式得eq\f(3600,t)=300,解得t=12.故他至少需要12分钟到达单位.方法总结:解决问题的关键要掌握路程、速度和时间的关系.【类型二】反比例函数在工程问题中的应用在某河治理工程施工过程中,某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成的工程量x(m/天)的函数关系图象如图所示.(1)请根据题意,求y与x之间的函数表达式;(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠15米,问该工程队需用多少天才能完成此项任务?(3)如果为了防汛工作的紧急需要,必须在一个月内(按30天计算)完成任务,那么每天至少要完成多少米?解析:(1)将点(24,50)代入反比例函数解析式,即可求得反比例函数的解析式;(2)用工作效率乘以工作时间即可得到工作量,然后除以工作效率即可得到工作时间;(3)工作量除以工作时间即可得到工作效率.解:(1)设y=eq\f(k,x).∵点(24,50)在其图象上,∴k=24×50=1200,所求函数表达式为y=eq\f(1200,x);(2)由图象可知共需开挖水渠24×50=1200(m),2台挖掘机需要工作1200÷(2×15)=40(天);(3)1200÷30=40(m),故每天至少要完成40m.方法总结:解决问题的关键是掌握工作量、工作效率和工作时间之间的关系.【类型三】利用反比例函数解决利润问题某商场出售一批进价为2元的贺卡,在销售中发现此商品的日售价x(元)与销售量y(张)之间有如下关系:x(元)3456y(张)20151210(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大并求出最大利润.解析:(1)要确定y与x之间的函数关系式,通过观察表中数据,可以发现x与y的乘积是相同的,都是60,所以可知y与x成反比例,用待定系数法求解即可;(2)代入x=10求得y的值即可;(3)首先要知道纯利润=(日销售单价x-2)×日销售数量y,这样就可以确定W与x的函数关系式,然后根据销售单价最高不超过10元,就可以求出获得最大日销售利润时的日销售单价x.解:(1)从表中数据可知y与x成反比例函数关系,设y=eq\f(k,x)(k为常数,k≠0),把点(3,20)代入得k=60,∴y=eq\f(60,x);(2)当x=10时,y=eq\f(60,10)=6,∴日销售单价为10元时,贺卡的日销售量是6张;(3)∵W=(x-2)y=60-eq\f(120,x),又∵x≤10,∴当x=10时,W取最大值,W最大=60-eq\f(120,10)=48(元).方法总结:本题考查了根据实际问题列反比例函数的关系式及求最大值,解答此类题目的关键是准确理解题意.【类型四】反比例函数的综合应用如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.已知第12分钟时,材料温度是14℃.(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?解析:(1)首先根据题意,材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例函数关系.将题中数据代入可求得两个函数的关系式;(2)把y=12代入y=4x+4得x=2,代入y=eq\f(168,x)得x=14,则对该材料进行特殊处理所用的时间为14-2=12(分钟).解:(1)设加热停止后反比例函数表达式为y=eq\f(k1,x),∵y=eq\f(k1,x)过(12,14),得k1=12×14=168,则y=eq\f(168,x);当y=28时,28=eq\f(168,x),解得x=6.设加热过程中一次函数表达式为y=k2x+b,由图象知y=k2x+b过点(0,4)与(6,28),∴eq\b\lc\{(\a\vs4\al\co1(b=4,,6k2+b=28,))解得eq\b\lc\{(\a\vs4\al\co1(k2=4,,b=4,))∴y=eq\b\lc\{(\a\vs4\al\co1(4+4x(0≤x≤6),,\f(168,x)(x>6);))(2)当y=12时,y=4x+4,解得x=2.由y=eq\f(168,x),解得x=14,所以对该材料进行特殊处理所用的时间为14-2=12(分钟).方法总结:现实生活中存在大量成反比例函数关系的两个变量,解答此类问题的关键是首先确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.三、板书设计1.反比例函数在路程问题中的应用;2.反比例函数在工程问题中的应用;3.利用反比例函数解决利润问题;4.反比例函数与一次函数的综合应用.【教学反思】本节课是用函数的观点处理实际问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题.将实际问题置于已有的知识背景之中,用数学知识重新解释“这是什么”,使学生逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.26.2实际问题与反比例函数第1课时实际问题中的反比例函数班级九年级科目数学编写人第1课时共2课时课题实际问题与反比例函数课型新授课审核人学习目标1、我能灵活列反比例函数表达式解决一些实际问题2、我能写出实际问题中的反比例函数关系式,并能结合图象加深对问题的理解.学习重点运用反比例函数的意义和性质解决实际问题。学习难点分析实际问题中的数量关系,正确写出函数解析式。学习过程一、交流预习1、反比例函数解析式的一般形式。2、反比例函数的图象和性质3、写出反比例函数的定义:__________________________________4、反比例函数的图象是________,当k>0时,_____________当k<0时,____________5、三角形中,当面积S一定时,高h与相应的底边长a关系。6、矩形中,当面积S一定时,长a与宽b关系。7、长方体中当体积V一定时,高h与底面积S的关系。8、一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么y与x的函数关系式是______,自变量x的取值范围是______二、合作探究1.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道,从而顺利完成的任务的情境。2、京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为三、达标训练2、有一面积为60的梯形,其上底长是下底长的,若下底长为x,高为y,则y与x的函数关系是.3、近视眼镜的度数y(度)与焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1000度近视眼镜镜片的焦距.4、已知某矩形的面积为20cm2(1)写出其长y与宽x之间的函数表达式。(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?(3)如果要求矩形的长不小于8cm,其宽至多要多少?5、如图,面积为2的ΔABC,一边长为,这边上的高为,则与的变化规律用函数图象表示大致是()6、如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?如果每小时排水量是5000m3,那么水池中的水将要多少小时排完7、完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式26.2实际问题与反比例函数同步检测附答案第一课时1.某种汽车可装油400L,若汽车每小时的用油量为(L).(1)用油量与每小时的用油量(L)的函数关系式为;(2)若每小时的用油量为20L,则这些油可用的时间为;(3)若要使汽车继续行驶40不需供油,则每小时用油量的范围是.2.甲、乙两地相距250千米,如果把汽车从甲地到乙地所用的时间(小时),表示为汽车的平均速度为(千米/小时)的函数,则此函数的图象大致是().3.如果等腰三角形的底边长为。底边上的高为,则它的面积为定植S时,则与的函数关系式为()A.B.C.D.第5踢图4.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()第5踢图为定值,与成反比例 B.为定值,与成反比例C.为定值,与成正比例 D.为定值,与成正比例5.一定质量的二氧化碳,其体积V(是密度的反比例函数,请你根据图中的已知条件,下出反比例函数的关系式,当V=1.9时,=.第6题图6你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度(四面条的粗细(横截面积)S(的反比例函数,其图象如图所示.第6题图(1)写出与S的函数关系式;(2)求当面条粗1.6时,面条的总长度是多少米?7.蓄电池的电压为定植,使用此电源时,电流I()和电阻R(成反比例函数关系,且当I=4A,R=5.(1)蓄电池的电压是多少?请你写出这一函数的表达式.(2)当电流喂A时,电阻是多少?(3)当电阻是10.时,电流是多少?(4)如果以此蓄电池为电源的用电器限制电流不超过10A,那么用电器的可变电阻应该控制在什么范围内?第一课时答案:1.(1)2.D,提示:由题意,得,故选D;3.C,提示:根据面积公式S=;4.B5.V=,提示:设V=6.解:(1)由于一定体积的面团做成拉面,面条的总长度(是面条的粗细(横截面积)S(的反比例函数,所以可设,由图象知双曲线过点(4,32),可得,即与S的函数关系式为(2)当面条粗1.6时,即当S=1.6时,当面条粗1.6时,面条的总长度为80米.7.(1)U=IR=4×5=20V,函数关系式是:I=(2)当I=1.5时,R=4.;(3)当R=10时,I=2A;(4)因为电流不超过10A,由I=可得,可变电阻应该大于等于2..§26.2实际问题与反比例函数(1)1.近视眼镜的度数y(度)与焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;求1000度近视眼镜镜片的焦距.2.如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?如果每小时排水量是5000m3,那么水池中的水将要多少小时排完?3.A、B两城市相距720千米,一列火车从A城去B城.(1)火车的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论