天津市重点中学九年级上学期期中考试数学试卷及答案解析(共五套)_第1页
天津市重点中学九年级上学期期中考试数学试卷及答案解析(共五套)_第2页
天津市重点中学九年级上学期期中考试数学试卷及答案解析(共五套)_第3页
天津市重点中学九年级上学期期中考试数学试卷及答案解析(共五套)_第4页
天津市重点中学九年级上学期期中考试数学试卷及答案解析(共五套)_第5页
已阅读5页,还剩104页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市重点中学九年级上学期期中考试数学试卷(一)一、选择题1、下列电视台的台标,是中心对称图形的是(

)A、B、C、D、2、在直角坐标系中,点A(2,﹣3)关于原点对称的点位于(

)A、第一象限B、第二象限C、第三象限D、第四象限3、下列方程是关于x的一元二次方程的是(

)A、ax2+bx+c=0B、=2C、x2+2x=x2﹣1D、3(x+1)2=2(x+1)4、下列函数中,不是二次函数的是(

)A、y=1﹣x2B、y=2(x﹣1)2+4C、y=(x﹣1)(x+4)D、y=(x﹣2)2﹣x25、如图,△ABC和△DCE都是直角三角形,其中一个三角形是由另一个三角形旋转得到的,下列叙述中错误的是(

)A、旋转中心是点CB、顺时针旋转角是90°C、旋转中心是点B,旋转角是∠ABCD、既可以是逆时针旋转又可以是顺时针旋转6、如图,CE是圆O的直径,⊙O的直径,AB为⊙O的弦,EC⊥AB,垂足为D,下面结论正确的有(

)①AD=BD;②=;③=;④OD=CD.A、1个B、2个C、3个D、4个7、已知:如图,⊙O的两条弦AE,BC相交于点D,连接AC,BE.若∠ACB=60°,则下列结论中正确的是(

)A、∠AOB=60°B、∠ADB=60°C、∠AEB=60°D、∠AEB=30°8、一元二次方程x2﹣mx+2m=0有两个相等的实数根,则m等于(

)A、0或8B、0C、8D、29、如图,抛物线顶点坐标是P(1,3),则函数y随自变量x的增大而减小的x的取值范围是(

)A、x>3B、x<3C、x>1D、x<110、如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为(

)A、2B、4C、4D、811、二次函数y=ax2+bx+c的图象如图,点(1,0)在函数图象上,那么abc、2a+b、a+b+c、a﹣b+c这四个代数式中,值大于或等于零的数有(

)A、1个B、2个C、3个D、4个12、如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是(

)A、2B、3C、4D、5二、填空题13、已知x1,x2是方程2x2﹣5x﹣1=0的两个根,则x1+x2的值是________.14、如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为________.15、圆的两条平行弦的长分别为6、8,若圆的半径为5,则这两条平行弦之间的距离为________.16、如果将抛物线y=x2+2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是________.17、如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.18、若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0)、(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,在下列四个算式中判定正确的是________

①a(x0﹣x1)(x0﹣x2)<0;②a>0;③b2﹣4ac≥0;④x1<x0<x2.三、解答题19、已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.20、如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点时网格线的交点)(1)将△ABC绕C点顺时针旋转90°,得到△A1B1C,请画出△A1B1C;(2)求线段BB1的长度为________.21、抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣2,0)、B(4,0),与y轴交于点C.(1)求抛物线解析式;(2)求△CAB的面积.22、如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.23、某商品现在的售价为每件30元,每天可卖出40件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?设每件商品降价x元,每天的销售额为y元.(1)分析:根据问题中的数量关系,用含x的式子填表:原价每件降价1元每件降价2元…每件降价x元每件售价(元)302928…________每天销量(件)404244…________(2)由以上分析,用含x的式子表示y,并求出问题的解.24、如图1,将两个完全相同的三角形纸片ABC和A′B′C重合放置,其中∠C=90°,∠B=∠B′=30°,AC=AC′=2.(1)如图2,固定△ABC,将△A′B′C绕点C旋转,当点A′恰好落在AB边上时,①∠CA′B′=________;旋转角ɑ=________(0°<ɑ<90°),线段A′B′与AC的位置关系是________;(2)②设△A′BC的面积为S1,△AB′C的面积为S2,则S1与S2的数量关系是什么?证明你的结论;(3)如图3,∠MON=60°,OP平分∠MON,OP=PN=4,PQ∥MO交ON于点Q.若在射线OM上存在点F,使S△PNF=S△OPQ,请直接写出相应的OF的长.25、已知抛物线的不等式为y=﹣x2+6x+c.(1)若抛物线与x轴有交点,求c的取值范围;(2)设抛物线与x轴两个交点的横坐标分别为x1,x2.若x12+x22=26,求c的值.(3)若P,Q是抛物线上位于第一象限的不同两点,PA,QB都垂直于x轴,垂足分别为A,B,且△OPA与△OQB全等.求证:c>﹣.答案解析部分一、<b>选择题</b>1、【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.2、【答案】B【考点】关于原点对称的点的坐标【解析】【解答】解:∵点A(2,﹣3)关于原点对称的点的坐标是(﹣2,3),其横坐标小于0,纵坐标大于0,∴点A(2,﹣3)关于原点对称的点位于第二象限.故选B.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.据此即可确定对称点的象限.3、【答案】D【考点】一元二次方程的定义【解析】【解答】解:A、ax2+bx+c=0当a=0时,不是一元二次方程,故A错误;B、=2不是整式方程,故B错误;C、x2+2x=x2﹣1是一元一次方程,故C错误;D、3(x+1)2=2(x+1)是一元二次方程,故D正确;故选:D.【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.4、【答案】D【考点】二次函数的定义【解析】【解答】解:A、y=1﹣x2是二次函数;B、y=2(x﹣1)2+4=2x2﹣4x+6,是二次函数;C、y=(x﹣1)(x+4)=x2+x﹣2,是二次函数;D、y=(x﹣2)2﹣x2=﹣4x+4,是一次函数;故选:D.【分析】将各函数整理成一般式后根据二次函数定义判断即可.5、【答案】C【考点】旋转的性质【解析】【解答】解:根据旋转的性质可知,△ABC通过旋转得到△DCE,它的旋转中心是点C,A正确,C错误;AC⊥CD即顺时针旋转的旋转角为90°,B正确;两个三角形,既可看成是顺时针旋转又可看成是逆时针旋转,只是旋转角不同,D正确.故选C.【分析】观察图形,选择旋转中心,旋转方向,旋转角.旋转中心只有一个,旋转方向可以是顺时针或者逆时针,相应的旋转角不同.6、【答案】C【考点】垂径定理,圆心角、弧、弦的关系【解析】【解答】解:∵CE是圆O的直径,⊙O的直径,AB为⊙O的弦,EC⊥AB,垂足为D,∴CE垂直平分AB,∴AD=BD,故①正确;∴弧AC=弧BC,故②正确;∴弧AE=弧BE,故③正确;∵AB是⊙O的弦,CE是直径,∴CD≠OD,故④错误.故选C.【分析】根据圆心角、弧、弦的关系及垂径定理对各小题进行逐一分析即可.7、【答案】C【考点】圆周角定理【解析】【解答】解:∵∠ACB=60°,∴∠AEB=∠ACB=60°,∠AOB=2∠ACB=120°,∠ADB=∠ACB+∠CAD>∠ACB=60°,故只有C正确.故选C.【分析】由圆周角定理知,∠AEB=∠C=60°,∠AOB=2∠C=120°,∠ADB=∠C+∠CAD>∠C=60°,所以只有C正确.8、【答案】A【考点】根的判别式【解析】【解答】解:根据题意知,△=(﹣m)2﹣4×1×2m=0,即m2﹣8m=0,解得:m=0或m=8,故选:A.【分析】根据方程有两个相等实数根可得△=(﹣m)2﹣4×1×2m=0,解之即可.9、【答案】C【考点】二次函数的性质【解析】【解答】解:∵抛物线顶点坐标是P(1,3),∴对称轴为x=1,又∵抛物线开口向下,∴函数y随自变量x的增大而减小的x的取值范围是x>1.故选C.【分析】需要根据抛物线的对称轴及开口方向,判断函数的增减性.10、【答案】C【考点】垂径定理,圆周角定理,等腰直角三角形【解析】【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.11、【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:由抛物线开口向上,a>0,由对称轴﹣>0,∴b<0,∵抛物线与y轴交点为负半轴,可知c<0,∴abc>0;∵对称轴﹣<1,∴2a+b>0;当x=1时,y=a+b+c=0;当x=﹣1时,y=a﹣b+c>0.故值为正的有3个.故选:C.【分析】由抛物线开口向上,a>0,由对称轴﹣>0,可得b<0,抛物线与y轴交点为负半轴,可知c<0,再根据特殊点进行推理判断即可求解.12、【答案】D【考点】垂径定理,圆周角定理【解析】【解答】解:∵MN是⊙O的直径,AB⊥MN,∴AD=BD,=,∠MAN=90°(①②③正确)∵=,∴==,∴∠ACM+∠ANM=∠MOB(④正确)∵∠MAE=∠AME,∴AE=ME,∠EAF=∠AFM,∴AE=EF,∴AE=MF(⑤正确).正确的结论共5个.故选:D.【分析】根据AB⊥MN,垂径定理得出①③正确,利用MN是直径得出②正确,==,得出④正确,结合②④得出⑤正确即可.二、<b>填空题</b>13、【答案】【考点】根与系数的关系【解析】【解答】解:∵x1,x2是方程2x2﹣5x﹣1=0的两个根,∴x1+x2=﹣=.故答案为:.【分析】直接根据根与系数的关系进行解答即可.14、【答案】4【考点】勾股定理,垂径定理【解析】【解答】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴OD==4.故答案为4.【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.15、【答案】7或1【考点】平行线之间的距离,垂径定理【解析】【解答】解:在直角△OAC中,AC=AB=3,OC===4,同理,EF的弦心距是3,当两条平行线在圆心的两侧时:两条平行弦之间的距离是4+3=7;当两条平行线在圆心的同侧时:两条平行弦之间的距离是4﹣3=1.故答案为:7或1.【分析】这两条平行弦可能位于圆心的同侧,也可能位于圆心的两侧,应分两种情况进行讨论,在同侧时,这两条平行弦之间的距离是两弦弦心距的差,在两侧时,这两条平行弦之间的距离是两弦弦心距的和.16、【答案】y=x2+2x+3【考点】二次函数图象与几何变换【解析】【解答】解:设平移后的抛物线解析式为y=x2+2x﹣1+b,把A(0,3)代入,得3=﹣1+b,解得b=4,则该函数解析式为y=x2+2x+3.故答案是:y=x2+2x+3.【分析】设平移后的抛物线解析式为y=x2+2x﹣1+b,把点A的坐标代入进行求值即可得到b的值.17、【答案】【考点】旋转的性质【解析】【解答】解:如图,连接AM,由题意得:CA=CM,∠ACM=60°,∴△ACM为等边三角形,∴AM=CM,∠MAC=∠MCA=∠AMC=60°;∵∠ABC=90°,AB=BC=2,∴AC=CM=2,∵AB=BC,CM=AM,∴BM垂直平分AC,∴BO=AC=,OM=CM•sin60°=,∴BM=BO+OM=+,故答案为:+.【分析】如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=AC=,OM=CM•sin60°=,最终得到BM=BO+OM.18、【答案】①【考点】二次函数图象与系数的关系,抛物线与x轴的交点【解析】【解答】解:∵二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,∴选项②项错误;∵二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,且坐标分别为(x1,0)、(x2,0),且x1<x2,∴b2﹣4ac>0,故选项③错误;若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故选项④错误若a>0,则x0﹣x1>0,x0﹣x2<0,∴(x0﹣x1)(x0﹣x2)<0,∴a(x0﹣x1)(x0﹣x2)<0,若a<0,则(x0﹣x1)与(x0﹣x2)同号,∴a(x0﹣x1)(x0﹣x2)<0,综上所述,a(x0﹣x1)(x0﹣x2)<0正确,故选项①正确,故答案为:①.【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对各选项讨论即可得解.三、<b>解答题</b>19、【答案】(1)解:由题意得,a=1,b=2m,c=m2﹣1,∵△=b2﹣4ac=(2m)2﹣4×1×(m2﹣1)=4>0,∴方程x2+2mx+m2﹣1=0有两个不相等的实数根(2)解:∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得,m=﹣4或m=﹣2【考点】一元二次方程的解,根的判别式【解析】【分析】(1)找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断;(2)将x=3代入已知方程中,列出关于系数m的新方程,通过解新方程即可求得m的值.20、【答案】(1)解:如图所示:△A1B1C,即为所求(2)3【考点】作图-旋转变换【解析】【解答】解:(2)线段BB1的长度为:=3.故答案为:3【分析】(1)直接利用旋转的性质分别得出对应点位置进而得出答案;(2)直接利用勾股定理得出线段BB1的长度.21、【答案】(1)解:将(﹣2,0),(4,0)代入函数解析式中得,解得:b=1,c=4.所以y=﹣x2+x+4(2)解:当x=0时,y=4.所以C(0,4),AB=6.S△ABC=AB•OC=×6×4=12【考点】待定系数法求二次函数解析式,抛物线与x轴的交点【解析】【分析】(1)将(﹣2,0),(4,0)代入函数解析式,列出b和c的二元一次方程组,求出b和c的值;(2)首先求出点C的坐标,再求出AB的长,利用三角形面积公式求出答案即可.22、【答案】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2【考点】圆心角、弧、弦的关系,圆周角定理【解析】【分析】(1)根据等腰三角形的性质由BC=DC得到∠CBD=∠CDB=39°,再根据圆周角定理得∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,所以∠BAD=∠BAC+∠CAD=78°;(2)根据等腰三角形的性质由EC=BC得∠CEB=∠CBE,再利用三角形外角性质得∠CEB=∠2+∠BAE,则∠2+∠BAE=∠1+∠CBD,加上∠BAE=∠CBD,所以∠1=∠2.23、【答案】(1)30﹣x①40+2x(2)解:根据题意可得,y=(30﹣x)(40+2x)=﹣2x2+20x+1200=﹣2(x﹣5)2+1250,∴当x=5时,y取得最大值,最大值为1250元,答:当每件商品降价5元时,可使每天的销售额最大,最大销售额是1250元【考点】二次函数的应用【解析】【解答】解:(1)由题意知,每件降价x元时,每件的售价为(30﹣x)元,每天销量为(40+2x)件,故答案为:30﹣x,40+2x;【分析】(1)根据售价=原售价﹣降低的价格,销售量=原销量+2×降低的价格可得;(2)根据销售额=售价×销售量,列出函数解析式并配方,即可得最值情况.24、【答案】(1)60°①60°②平行(2)解:S1=S2.理由如下:∵A′B′∥AC,∴A′E⊥BC,在Rt△CA′E中,A′E=CA′=1,CE=A′E=,∴S1=•1•2=,S2=•2•=,∴S1=S2(3)如图3,作PF1∥ON交OM于F1,作PF2⊥OP交OM于F2,∵∠MON=60°,OP平分∠MON,∴∠POQ=∠POF1=30°,∵PQ∥OM,PF1∥OQ,∴四边形OQPF1为平行四边形,∴PF1=OQ,∴S△NF1P=S△POQ,∵∠OPF2=90°,∠F2OP=30°,∴∠OF2P=60°,而∠F2F1P=∠MON=60°,∴△F2F1P为等边三角形,∴PF2=PF1,由(1)中的结论得S△PNF2=S△OPQ,∴点F1、点F2为满足条件的点,在Rt△OPF2中,sin∠POF2=,∴OF2==,∴PF2=OF2=,∵PF1∥OQ,∴∠OPF1=∠POQ=30°,∴∠OPF1=∠POF1=30°,∴OF1=PF1=PF2,∴OF1=,综上所述,OF的长为或.【考点】全等三角形的性质,图形的旋转【解析】【解答】解:(1)①如图1,∵∠C=90°,∠B=∠B′=30°,AC=AC′=2,∴∠CAB=∠CA′B′=60°,BC=2,如图2,∵△A′B′C绕点C旋转,点A′恰好落在AB边上,∴∠CAB=∠CA′B′=60°,CA=CA′,∠ACA′为旋转角,∴△CAA′为等边三角形,∴∠ACA′=60°,即旋转角为60°;∵∠CA′B′=∠ACA′,∴A′B′∥AC;故答案为60°;60°;平行;【分析】(1)①如图2,理由旋转的性质得∠CAB=∠CA′B′=60°,CA=CA′,∠ACA′为旋转角,则可判断△CAA′为等边三角形,于是得到∠ACA′=60°,旋转角为60°;然后根据平行线的判断方法可判断A′B′∥AC;(2)②先利用含30度的直角三角形三边的关系计算出A′E=CA′=1,CE=A′E=,然后根据三角形面积公式计算出S1和S2,从而得到它们的数量关系;(3)如图3,作PF1∥ON交OM于F1,作PF2⊥OP交OM于F2,先证明四边形OQPF1为平行四边形得到PF1=OQ,则S△NF1P=S△POQ,再证明△F2F1P为等边三角形得到PF2=PF1,于是利用(1)中的结论得S△PNF2=S△OPQ,则可判定点F1、点F2为满足条件的点,然后计算OF2和OF1即可.25、【答案】(1)解:∵抛物线与x轴有交点,∴b2﹣4ac≥0,∴36+4c≥0,∴x≥﹣9(2)解:∵x1+x2=6,x1x2=﹣c,∴x12+x22=(x1+x2)2﹣2x1x2=36+2c=26∴c=﹣5(3)证明:∵△OPA≌△QOB,∴OA=BQ,AP=OB,∴可以设P(m,n),则Q(n,m)将P(m,n),Q(n,m)代入原解析式中得:,①﹣②得:n2﹣m2+6m﹣6n=n﹣m∴n2﹣m2+7m﹣7n=0,∴(n﹣m)(n+m﹣7)=0,∴m=n或m=7﹣n,∵m,n不相等,∴m=7﹣n,将m=7﹣n代入①得:n2﹣7n+7﹣c=0,∵b2﹣4ac>0,∴49﹣4(7﹣c)>0,c>﹣.【考点】根与系数的关系【解析】【分析】(1)由题意△≥0,列出不等式即可解决问题.(2)利用根与系数关系,列出方程即可解决问题.(3)设P(m,n),则Q(n,m),列出方程组,求出m与n的关系,得到关于n的方程,根据判别式大于0,即可解决问题.天津市重点中学九年级上学期期中考试数学试卷(二)一、选择题1、一元二次方程3x2﹣4=﹣2x的二次项系数、一次项系数、常数项分别为(

)A、3,﹣4,﹣2B、3,﹣2,﹣4C、3,2,﹣4D、3,﹣4,02、下列图形中,是中心对称图形的是(

)A、B、C、D、3、抛物线y=(x+2)2+3的顶点坐标是(

)A、(﹣2,3)B、(2,3)C、(﹣2,﹣3)D、(2,﹣3)4、下列方程是一元二次方程的是(

)A、x2+=3B、x2+x=yC、(x﹣4)(x+2)=3D、3x﹣2y=05、若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为(

)A、x1=0,x2=6B、x1=1,x2=7C、x1=1,x2=﹣7D、x1=﹣1,x2=76、如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为(

)A、B、2C、3D、27、用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为(

)A、(x+)2=B、(x+)2=C、(x﹣)2=D、(x﹣)2=8、已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是(

)A、当a=1时,函数图象过点(﹣1,1)B、当a=﹣2时,函数图象与x轴没有交点C、若a>0,则当x≥1时,y随x的增大而减小D、若a<0,则当x≤1时,y随x的增大而增大9、如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是(

)A、0B、1C、2D、310、已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则(

)A、y1<y2<y3B、y3<y2<y1C、y3<y1<y2D、y2<y3<y111、电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.若每轮感染中平均一台电脑会感染x台电脑,则下面所列方程中正确的是(

)A、x(x+1)=81B、1+x+x2=81C、(1+x)2=81D、1+(1+x)2=8112、如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是(

)A、①③B、①③④C、②④⑤D、①③④⑤二、填空题13、已知x=1是方程x2+mx+3=0的一个实数根,则m的值是________.14、如图所示的花朵图案,至少要旋转________度后,才能与原来的图形重合.15、如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为________16、方程ax2+bx+c=0(a≠0)的两根为﹣3和1,那么抛物线y=ax2+bx+c(a≠0)的对称轴是直线________.17、一位运动员投掷铅球,如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y=﹣,那么铅球运动过程中最高点离地面的距离为________米.18、如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=________.三、解答题19、解下列方程:(1)x2﹣2x=4(2)x(x﹣3)=x﹣3.20、如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为________.21、已知二次函数y=﹣x2+2x+3.(1)求函数图象的顶点坐标和图象与x轴交点坐标;(2)当x取何值时,函数值最大?(3)当y>0时,请你写出x的取值范围.22、果农李明种植的草莓计划以每千克15元的单价对外批发销售,由于部分果农盲目扩大种植,造成该草莓滞销.李明为了加快销售,减少损失,对价格经过两次下调后,以每千克9.6元的单价对外批发销售.(1)求李明平均每次下调的百分率;(2)小刘准备到李明处购买3吨该草莓,因数量多,李明决定再给予两种优惠方案以供其选择:方案一:打九折销售;方案二:不打折,每吨优惠现金400元.试问小刘选择哪种方案更优惠,请说明理由.23、如图,在正方形ABCD中,E,F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.24、如图,某市近郊有一块长为60米,宽为50米的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为a米)区域将铺设塑胶地面作为运动场地.(1)设通道的宽度为x米,则a=________(用含x的代数式表示);(2)若塑胶运动场地总占地面积为2430平方米.请问通道的宽度为多少米?25、如图1,抛物线y=﹣x2+bx+c与x轴交于A(2,0),B(﹣4,0)两点.(1)求该抛物线的解析式;(2)若抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在抛物线的第二象限图象上是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若不存,请说明理由.答案解析部分一、<b>选择题</b>1、【答案】C【考点】一元二次方程的定义【解析】【解答】解:方程整理得:3x2+2x﹣4=0,则二次项系数为3,一次项系数为2,常数项为﹣4,故选C【分析】方程整理为一般形式,找出二次项系数,一次项系数,以及常数项即可.2、【答案】A【考点】中心对称及中心对称图形【解析】【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【分析】根据中心对称的定义,结合所给图形即可作出判断.3、【答案】A【考点】二次函数的性质【解析】【解答】解:由于y=(x+2)2+3为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(﹣2,3).故选:A.【分析】抛物线y=a(x﹣h)2+k,顶点坐标是(h,k),直接根据抛物线y=(x+2)2+3写出顶点坐标则可.4、【答案】C【考点】一元二次方程的定义【解析】【解答】解:A、分母中含有未知数,是分式方程,故A错误;B、含有两个未知数,不是一元二次方程,故B错误;C、整理后可变形为x2﹣2x﹣11=0,是一元二次方程,故C正确;D、含有两个未知数,不是一元二次方程,故D错误.故选:C.【分析】依据分式方程、二元二次方程、一元二次方程的定义求解即可.5、【答案】D【考点】解一元二次方程-因式分解法,二次函数的性质【解析】【解答】解:∵二次函数y=x2+mx的对称轴是x=3,∴﹣=3,解得m=﹣6,∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.故选D.【分析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可.6、【答案】A【考点】旋转的性质【解析】【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.7、【答案】A【考点】解一元二次方程-配方法【解析】【解答】解:ax2+bx+c=0,ax2+bx=﹣c,x2+x=﹣,x2+x+()2=﹣+()2,(x+)2=,故选:A.【分析】先移项,把二次项系数化成1,再配方,最后根据完全平方公式得出即可.8、【答案】D【考点】二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.9、【答案】D【考点】等边三角形的性质,菱形的判定,旋转的性质【解析】【解答】解:∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.【分析】根据旋转和等边三角形的性质得出∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,求出△ACD是等边三角形,求出AD=AC,根据菱形的判定得出四边形ABCD和ACED都是菱形,根据菱形的判定推出AC⊥BD.10、【答案】C【考点】二次函数图象上点的坐标特征【解析】【解答】解:抛物线y=﹣2x2﹣8x+m的对称轴为x=﹣2,且开口向下,x=﹣2时取得最大值.∵﹣4<﹣1,且﹣4到﹣2的距离大于﹣1到﹣2的距离,根据二次函数的对称性,y3<y1.∴y3<y1<y2.∴故选C.【分析】求出抛物线的对称轴,结合开口方向画出草图,根据对称性解答问题.11、【答案】C【考点】一元二次方程的应用【解析】【解答】解:每轮感染中平均一台电脑会感染x台电脑,列方程得:1+x+x(1+x)=81,即(1+x)2=81故选:C.【分析】设每轮感染中平均一台电脑会感染x台电脑.则经过一轮感染,1台电脑感染给了x台电脑,这(x+1)台电脑又感染给了x(1+x)台电脑.等量关系:经过两轮感染后就会有81台电脑被感染.12、【答案】D【考点】二次函数的性质【解析】【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.二、<b>填空题</b>13、【答案】﹣4【考点】一元二次方程的解【解析】【解答】解:把x=1代入方程x2+mx+3=0得:1+m+3=0,解得:m=﹣4,故答案为:﹣4.【分析】把x=1代入方程x2+mx+3=0得出1+m+3=0,求出方程的解即可.14、【答案】45【考点】旋转对称图形【解析】【解答】解:花朵图案,至少要旋转=45度后,才能与原来的图形重合.【分析】该图形被平分成8部分,因而每部分被分成的圆心角是45°,并且圆具有旋转不变性,因而旋转45度的整数倍,就可以与自身重合.15、【答案】﹣1或2【考点】根的判别式【解析】【解答】解:∵关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,∴△=0,即4a2﹣4(a+2)=0,解得a=﹣1或2.故答案为:﹣1或2.【分析】根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.16、【答案】x=﹣1【考点】抛物线与x轴的交点【解析】【解答】解:∵函数y=ax2+bx+c的图象与x轴的交点的横坐标就是方程ax2+bx+c=0的根,∵x1+x2=﹣3+1=﹣=﹣2.则对称轴x=﹣=×(﹣)=×(﹣2)=﹣1.【分析】根据函数y=ax2+bx+c的图象与x轴的交点的横坐标就是方程ax2+bx+c=0的根及两根之和公式来解决此题.17、【答案】3【考点】二次函数的应用【解析】【解答】解:由题意可得:y=﹣=﹣(x2﹣8x)+=﹣(x﹣4)2+3,故铅球运动过程中最高点离地面的距离为:3m.故答案为:3.【分析】直接利用配方法求出二次函数最值即可.18、【答案】2﹣3【考点】旋转的性质【解析】【解答】解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB•tan∠ABH=×=1,∴EH=1,∴FH=﹣1,在Rt△FKH中,∠FKH=30°,∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2(﹣1)﹣1=2﹣3;故答案为:2﹣3.【分析】连接BH,由正方形的性质得出∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,得出∠ABE=60°,由HL证明Rt△ABH≌Rt△EBH,得出∠ABH=∠EBH=∠ABE=30°,AH=EH,由三角函数求出AH,得出EH、FH,再求出KH=2FH,即可求出AK.三、<b>解答题</b>19、【答案】(1)解:原方程可化为x2﹣2x﹣4=0,∵a=1,b=﹣2,c=﹣4,∴△=b2﹣4ac=20>0,∴x===1±,∴x1=1﹣,x2=1+(2)解:由原方程得x(x﹣3)﹣(x﹣3)=0,(x﹣3)(x﹣1)=0,∴x﹣3=0或x﹣1=0,解得:x=3或x=1【考点】解一元二次方程-配方法,解一元二次方程-因式分解法【解析】【分析】(1)方程化为一般式后利用公式法求解可得;(2)由原方程移项后可得x(x﹣3)﹣(x﹣3)=0,再利用因式分解法求解可得.20、【答案】(1)解:△A1B1C如图所示,△A2B2C2如图所示(2)(2,﹣1)【考点】作图-平移变换,作图-旋转变换【解析】【解答】解:(2)如图,对称中心为(2,﹣1).【分析】(1)根据网格结构找出点A、B关于点C成中心对称的点A1、B1的位置,再与点A顺次连接即可;根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)根据中心对称的性质,连接两组对应点的交点即为对称中心.21、【答案】(1)解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴图象顶点坐标为(1,4),当y=0时,有﹣x2+2x+3=0解得:x1=﹣1,x2=3,∴图象与x轴交点坐标为(﹣1,0),(3,0)(2)解:由(1)知,抛物线顶点坐标为(1,4),且抛物线开口方向向下,当x=1时,函数值最大(3)解:因为图象与x轴交点坐标为(﹣1,0),(3,0),且抛物线开口方向向下,所以当y>0时,﹣1<x<3【考点】二次函数的最值,抛物线与x轴的交点【解析】【分析】(1)把二次函数化为顶点式,则可得出二次函数的对称轴和顶点坐标;(2)、(3)利用二次函数图象性质作答.22、【答案】(1)解:设平均每次下调的百分率为x.由题意,得15(1﹣x)2=9.6.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%(2)解:小刘选择方案一购买更优惠.理由:方案一所需费用为:9.6×0.9×3000=25920(元),方案二所需费用为:9.6×3000﹣400×3=27600(元).∵25920<27600,∴小刘选择方案一购买更优惠【考点】一元二次方程的应用【解析】【分析】(1)设出平均每次下调的百分率,根据从15元下调到9.6列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.23、【答案】(1)证明:∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠ABQ=∠ADF=45°,在△AQE和△AFE中,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线(2)证明:由(1)得△AQE≌△AFE,∴QE=EF,在Rt△QBE中,QB2+BE2=QE2,则EF2=BE2+DF2.【考点】正方形的性质,旋转的性质【解析】【分析】(1)直接利用旋转的性质得出△AQE≌△AFE(SAS),进而得出∠AEQ=∠AEF,即可得出答案;(2)利用(1)中所求,再结合勾股定理得出答案.24、【答案】(1)(2)解:根据题意得,(50﹣2x)(60﹣3x)﹣x•=2430,解得x1=2,x2=38(不合题意,舍去).答:中间通道的宽度为2米【考点】一元二次方程的应用【解析】【解答】解:(1)设通道的宽度为x米,则a=;故答案为:【分析】(1)根据通道宽度为x米,表示出a即可;(2)根据矩形面积减去通道面积为塑胶运动场地面积,列出关于x的方程,求出方程的解即可得到结果.25、【答案】(1)解:将A(2,0),B(﹣4,0)代入得:,解得:,则该抛物线的解析式为:y=﹣x2﹣2x+8(2)解:如图1,点A关于抛物线对称轴的对称点为点B,设直线BC的解析式为:y=kx+d,将点B(﹣4,0)、C(0,8)代入得:,解得:,故直线BC解析式为:y=2x+8,直线BC与抛物线对称轴x=﹣1的交点为Q,此时△QAC的周长最小.解方程组得,则点Q(﹣1,6)即为所求(3)解:如图2,过点P作PE⊥x轴于点E,P点(x,﹣x2﹣2x+8)(﹣4<x<0)∵S△BPC=S四边形BPCO﹣S△BOC=S四边形BPCO﹣16若S四边形BPCO有最大值,则S△BPC就最大∴S四边形BPCO=S△BPE+S直角梯形PEOC=BE•PE+OE(PE+OC)=(x+4)(﹣x2﹣2x+8)+(﹣x)(﹣x2﹣2x+8+8)=﹣2(x+2)2+24,当x=﹣2时,S四边形BPCO最大值=24,∴S△BPC最大=24﹣16=8,当x=﹣2时,﹣x2﹣2x+8=8,∴点P的坐标为(﹣2,8).【考点】待定系数法求二次函数解析式【解析】【分析】(1)直接利用待定系数求出二次函数解析式即可;(2)首先求出直线BC的解析式,再利用轴对称求最短路线的方法得出答案;(3)根据S△BPC=S四边形BPCO﹣S△BOC=S四边形BPCO﹣16,得出函数最值,进而求出P点坐标即可.天津市重点中学九年级上学期期中考试数学试卷(三)一、选择题1、一元二次方程x(x+5)=0的根是(

)A、x1=0,x2=5B、x1=0,x2=﹣5C、x1=0,x2=D、x1=0,x2=﹣2、下列四个图形中属于中心对称图形的是(

)A、B、C、D、3、已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为(

)A、B、C、3D、44、抛物线y=﹣3x2+12x﹣7的顶点坐标为(

)A、(2,5)B、(2,﹣19)C、(﹣2,5)D、(﹣2,﹣43)5、由二次函数y=2(x﹣3)2+1可知(

)A、其图象的开口向下B、其图象的对称轴为x=﹣3C、其最大值为1D、当x<3时,y随x的增大而减小6、如图中∠BOD的度数是(

)A、150°B、125°C、110°D、55°7、如图,点E在y轴上,⊙E与x轴交于点A,B,与y轴交于点C,D,若C(0,9),D(0,﹣1),则线段AB的长度为(

)A、3B、4C、6D、88、如图,AB是圆O的直径,C,D是圆O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F.则下列结论:①AD⊥BD;②∠AOC=∠ABC;③CB平分∠ABD;④AF=DF;⑤BD=2OF.其中一定成立的是(

)A、①③⑤B、②③④C、②④⑤D、①③④⑤9、《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”(

)A、3步B、5步C、6步D、8步10、如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为(

)A、35°B、40°C、50°D、65°11、以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是(

)A、B、C、D、12、如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为(

)A、B、C、D、二、填空题13、点P(2,﹣1)关于原点的对称点坐标为P′(m,1),则m=________.14、如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是________.15、关于x的二次函数y=x2﹣kx+k﹣2的图象与y轴的交点在x轴的上方,请写出一个满足条件的二次函数的表达式:________.16、如图,抛物线y=ax2+bx+c与x轴的一个交点是A(1,0),对称轴为直线x=﹣1,则一元二次方程ax2+bx+c=0的解是________.17、某种植物的主干长出若干数目的支干又长出同样数目的小分支,主干、支干和小分支的总数是91.设每个支干长出x个小分支,则可得方程为________.18、如图,AB是⊙O的一条弦,C是⊙O上一动点且∠ACB=45°,E,F分别是AC,BC的中点,直线EF与⊙O交于点G,H.若⊙O的半径为2,则GE+FH的最大值为________.三、解答题19、按要求解一元二次方程:(1)x(x+4)=8x+12(适当方法)(2)3x2﹣6x+2=0(配方法)20、在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.21、如图,AB是圆O的直径,CD是圆O的一条弦,且CD⊥AB于点E.(1)若∠A=48°,求∠OCE的度数;(2)若CD=4,AE=2,求圆O的半径.22、如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.证明:(1)BD=DC;(2)DE是⊙O切线.23、如图,要建一个长方形养鸡场,鸡场的一边靠墙(墙足够长),如果用50m长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长度为x(篱笆墙的厚度忽略不计).(1)要使鸡场面积最大,鸡场的长度应为多少米?(2)如果中间有n(n是大于1的整数)道篱笆墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,要使鸡场面积最大,鸡场长度与中间隔离墙的道数有怎样的关系?24、如图,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM,CN交于点F.(1)求证:AN=MB;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在(2)中画出符合要求的图形,并判断(1)(2)题中的两结论是否依然成立.并说明理由.25、如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣8,0),B(0,﹣6)两点.(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.答案解析部分一、<b>选择题</b>1、【答案】B【考点】解一元二次方程-因式分解法【解析】【解答】解:∵x(x+5)=0,∴x=0或x+5=0,解得:x1=0,x2=﹣5,故选:B.【分析】利用分解因式法即可求解.2、【答案】A【考点】中心对称及中心对称图形【解析】【解答】解:A、是中心对称图形,故选项正确;B、不是中心对称图形,故选项错误;C、不是中心对称图形,故选项错误;D、不是中心对称图形,故选项错误.故选:A.【分析】根据中心对称图形的定义即可作出判断.3、【答案】A【考点】二次函数的性质【解析】【解答】解:由,消去y得到3x2﹣4x+c=0,∵二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,∴△=0,∴16﹣12c=0,∴c=.故选A【分析】由,消去y得到3x2﹣4x+c=0,因为二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,所以△=0,列出方程即可解决问题.4、【答案】A【考点】二次函数的性质【解析】【解答】解:∵y=﹣3x2+12x﹣7=﹣3(x﹣2)2+5,∴顶点坐标为(2,5),故选A.【分析】把抛物线解析式化为顶点式即可求得答案.5、【答案】D【考点】二次函数的性质【解析】【解答】解:∵y=2(x﹣3)2+1,∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1),∴函数有最小值1,当x<3时,y随x的增大而减小,故选D.【分析】根据二次函数的解析式进行逐项判断即可.6、【答案】C【考点】圆周角定理【解析】【解答】解:如图,连接OC.∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C.【分析】连接OC根据∠BOC=2∠BAC,∠COD=2∠CED即可解决问题.7、【答案】C【考点】坐标与图形性质,勾股定理,垂径定理【解析】【解答】解:连接EB,如图所示:∵C(0,9),D(0,﹣1),∴OD=1,OC=9,∴CD=10,∴EB=ED=CD=5,OE=5﹣1=4,∵AB⊥CD,∴AO=BO=AB,OB===3,∴AB=2OB=6;故选:C.【分析】连接EB,由题意得出OD=1,OC=9,∴CD=10,得出EB=ED=CD=5,OE=4,由垂径定理得出AO=BO=AB,由勾股定理求出OB,即可得出结果.8、【答案】D【考点】平行线的性质,圆周角定理【解析】【解答】解:①∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,正确②∠AOC=2∠ABC,错误;③、∵OC∥BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴CB平分∠ABD,④、∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,⑤、由④有,AF=DF,∵点O为AB中点,∴OF是△ABD的中位线,∴BD=2OF,正确的有①③④⑤,故选D.【分析】①由直径所对圆周角是直角进行判断;②根据圆周角定理进行判断;③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论.9、【答案】C【考点】三角形的内切圆与内心【解析】【解答】解:根据勾股定理得:斜边为=17,则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步,故选C【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径.10、【答案】C【考点】旋转的性质【解析】【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.11、【答案】D【考点】正多边形和圆【解析】【解答】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,∴OE=2×sin45°=;如图3,∵OA=2,∴OD=2×cos30°=,则该三角形的三边分别为:1,,,∵(1)2+()2=()2,∴该三角形是直角边,∴该三角形的面积是×1××=,故选:D.【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.12、【答案】B【考点】函数的图象【解析】【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.二、<b>填空题</b>13、【答案】﹣2【考点】关于原点对称的点的坐标【解析】【解答】解:∵点P(2,﹣1)关于原点的对称点坐标为P′(m,1),∴m=﹣2,故答案为:﹣2.【分析】根据两个点关于原点对称时,它们的坐标符号相反可直接得到答案.14、【答案】(﹣4,3)【考点】坐标与图形变化-旋转【解析】【解答】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,∵OA绕坐标原点O逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB和△OA′B′中,,∴△AOB≌△OA′B′(AAS),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为:(﹣4,3).【分析】过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,根据旋转的性质可得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角边”证明△AOB和△OA′B′全等,根据全等三角形对应边相等可得OB′=AB,A′B′=OB,然后写出点A′的坐标即可.15、【答案】y=x2﹣3x+1【考点】二次函数的性质【解析】【解答】解:∵关于x的二次函数y=x2﹣kx+k﹣2的图象与y轴的交点在x轴的上方,∴k﹣2>0,解得:k>2,∴答案为:y=x2﹣3x+1答案不唯一.【分析】与y轴的交点在x轴的上方即常数项大于0,据此求解.16、【答案】x1=1,x2=﹣3【考点】抛物线与x轴的交点【解析】【解答】解:∵抛物线y=ax2+bx+c与x轴的一个交点是A(1,0),对称轴为直线x=﹣1,∴抛物线y=ax2+bx+c与x轴的另一个交点是(﹣3,0),∴一元二次方程ax2+bx+c=0的解是:x1=1,x2=﹣3.故答案为:x1=1,x2=﹣3.【分析】直接利用抛物线的对称性以及结合对称轴以及抛物线y=ax2+bx+c与x轴的一个交点是A(1,0),得出另一个与x轴的交点,进而得出答案.17、【答案】x2+x+1=91【考点】一元二次方程的应用【解析】【解答】解:设每个支干长出x个小分支,根据题意列方程得:x2+x+1=91.故答案为x2+x+1=91.【分析】由题意设每个支干长出x个小分支,每个小分支又长出x个分支,则又长出x2个分支,则共有x2+x+1个分支,即可列方程.18、【答案】4﹣【考点】三角形中位线定理,圆周角定理【解析】【解答】解:连接OA,OB,∵∠ACB=45°,∴∠AOB=90°.∵OA=OB,∴△AOB是等腰直角三角形,∴AB=2,当GH为⊙O的直径时,GE+FH有最大值.∵点E、F分别为AC、BC的中点,∴EF=AB=,∴GE+FH=GH﹣EF=4﹣,故答案为:4﹣.【分析】接OA,OB,根据圆周角定理可得出∠AOB=90°,故△AOB是等腰直角三角形.由点E、F分别是AC、BC的中点,根据三角形中位线定理得出EF=AB=为定值,则GE+FH=GH﹣EF=GH﹣,所以当GH取最大值时,GE+FH有最大值.而直径是圆中最长的弦,故当GH为⊙O的直径时,GE+FH有最大值,问题得解.三、<b>解答题</b>19、【答案】(1)解:原方程整理可得:x2﹣4x﹣12=0,因式分解可得(x+2)(x﹣6)=0,∴x+2=0或x﹣6=0,解得:x=﹣2或x=6(2)解:3x2﹣6x+2=0,3x2﹣6x=﹣2,x2﹣2x=﹣,x2﹣2x+1=1﹣,即(x﹣1)2=∴x﹣1=±,∴x=1±,∴x1=,x2=【考点】解一元二次方程-配方法【解析】【分析】(1)整理成一般式后利用因式分解法求解可得;(2)配方法求解即可.20、【答案】(1)解:∵二次函数图像的顶点为A(1,﹣4),∴设二次函数解析式为y=a(x﹣1)2﹣4,把点B(3,0)代入二次函数解析式,得:0=4a﹣4,解得a=1,∴二次函数解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3(2)解:令y=0,得x2﹣2x﹣3=0,解方程,得x1=3,x2=﹣1.∴二次函数图象与x轴的两个交点坐标分别为(3,0)和(﹣1,0),∴二次函数图象上的点(﹣1,0)向右平移1个单位后经过坐标原点.故平移后所得图象与x轴的另一个交点坐标为(4,0)【考点】二次函数图象与几何变换,待定系数法求二次函数解析式【解析】【分析】(1)有顶点就用顶点式来求二次函数的解析式;(2)由于是向右平移,可让二次函数的y的值为0,得到相应的两个x值,算出负值相对于原点的距离,而后让较大的值也加上距离即可.21、【答案】(1)解:∵CD⊥AB,∠A=48°,∴∠ADE=42°.∴∠AOC=2∠ADE=84°,∴∠OCE=90°﹣84°=6°(2)解:因为AB是圆O的直径,且CD⊥AB于点E,所以CE=CE=×4=2,在Rt△OCE中,OC2=CE2+OE2,设圆O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,所以r2=(2)2+(r﹣2)2,解得:r=3.所以圆O的半径为3【考点】勾股定理,垂径定理,圆周角定理【解析】【分析】(1)首先求出∠ADE的度数,再根据圆周角定理求出∠AOC的度数,最后求出∠OCE的度数;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r的方程,求出方程的解即可得到圆的半径r的值.22、【答案】(1)证明:如右图所示,连接AD,∵AB是直径,∴∠ADB=90°,又∵AB=AC,∴BD=CD(2)连接OD,∵∠BAC=2∠BAD,∠BOD=2∠BAD,∴∠BAC=∠BOD,∴OD∥AC,又∵DE⊥AC,∴∠AED=90°,∴∠ODB=∠AED=90°,∴DE是⊙O的切线.【考点】圆周角定理,切线的判定【解析】【分析】(1)连接AD,由于AB是直径,那么∠ADB=90°,而AB=AC,根据等腰三角形三线合一定理可知BD=CD;(2)连接OD,由于∠BAC=2∠BAD,∠BOD=2∠BAD,那么∠BAC=∠BOD,可得OD∥AC,而DE⊥AC,易证∠ODB=90°,从而可证DE是⊙O切线.23、【答案】(1)解:设鸡场的面积为y平方米,y=x()=﹣=,∴x=25时,鸡场的面积最大,即要使鸡场面积最大,鸡场的长度应为25米(2)解:设鸡场的面积为y平方米,y=x()=﹣=,∴x=25时,鸡场的面积最大,即要使鸡场面积最大,鸡场的长度应为25米;由(1)(2)可知,无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25m【考点】二次函数的应用【解析】【分析】(1)根据题意可以得到鸡场的面积与鸡场的长度的函数关系式,从而可以解答本题;(2)根据题意可以求得当中间有n(n是大于1的整数)道篱笆墙,鸡场的最大面积,从而可以解答本题.24、【答案】(1)证明:∵△ACM,△CBN是等边三角形,∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,在△CAN和△MCB中,,∴△CAN≌△MCB(SAS),∴AN=BM(2)证明:∵△CAN≌△MCB,∴∠CAN=∠CMB,又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,∴∠MCF=∠ACE,在△CAE和△CMF中,,∴△CAE≌△CMF(ASA),∴CE=CF,∴△CEF为等腰三角形,又∵∠ECF=60°,∴△CEF为等边三角形(3)解:连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,在△ACN和△MCB中,,∴△ACN≌△MCB(SAS),∴AN=MB.当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形,即结论1成立,结论2不成立.【考点】全等三角形的判定与性质,等边三角形的判定与性质【解析】【分析】(1)可通过全等三角形来得出简单的线段相等,证明AN=BM,只要求出三角形ACN和MCB全等即可,这两个三角形中,已知的条件有AC=MC,NC=CB,只要证明这两组对应边的夹角相等即可,我们发现∠ACN和∠MCB都是等边三角形的外角,因此它们都是120°,这样就能得出两三角形全等了.也就证出了AN=BM.(2)我们不难发现∠ECF=180﹣60﹣60=60°,因此只要我们再证得两条边相等即可得出三角形ECF是等边三角形,可从EC,CF入手,由(1)的全等三角形我们知道,∠MAC=∠BMC,又知道了AC=MC,∠MCF=∠ACE=60°,那么此时三角形AEC≌三角形MCF,可得出CF=CE,于是我们再根据∠ECF=60°,便可得出三角形ECF是等边三角形的结论.(3)判定结论1是否正确,也是通过证明三角形ACN和BCM来求得.这两个三角形中MC=AC,NC=BC,∠MCB和∠ACN都是60°+∠ACB,因此两三角形就全等,AN=BM,结论1正确.如图,当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形.25、【答案】(1)解:设直线AB的函数解析式为y=kx+b,把A(﹣8,0),B(0,﹣6)代入得,解得,所以直线AB的解析式为y=﹣x﹣6(2)解:在Rt△AOB中,AB==10,∵∠AOB=90°,∴AB为⊙M的直径,∴点M为AB的中点,M(﹣4,﹣3),∵MC∥y轴,MC=5,∴C(﹣4,2),设抛物线的解析式为y=a(x+4)2+2,把B(0,﹣6)代入得16a+2=﹣6,解得a=﹣,∴抛物线的解析式为y=﹣(x+4)2+2,即y=﹣x2﹣4x﹣6(3)解:存在.当y=0时,﹣(x+4)2+2=0,解得x1=﹣2,x2=﹣4,∴D(﹣6,0),E(﹣2,0),S△ABC=S△ACM+S△BCM=•8•CM=20,设P(t,﹣t2﹣4t﹣6),∵S△PDE=S△ABC,∴•(﹣2+6)•|﹣t2﹣4t﹣6|=•20,即|﹣t2﹣4t﹣6|=1,当﹣t2﹣4t﹣6=1,解得t1=﹣4+,t2=﹣4﹣,此时P点坐标为(﹣4+,1)或(﹣4﹣,0)当﹣t2﹣4t﹣6=﹣1,解得t1=﹣4+,t2=﹣4﹣;此时P点坐标为(﹣4+,﹣1)或(﹣4﹣,0)综上所述,P点坐标为(﹣4+,1)或(﹣4﹣,0)或(﹣4+,﹣1)或(﹣4﹣,0)时,使得S△PDE=S△ABC.【考点】圆的综合题【解析】【分析】(1)利用待定系数法可求出直线AB的解析式;(2)先利用勾股定理计算出AB=10,再根据圆周角定理得到AB为⊙M的直径,则点M为AB的中点,M(﹣4,﹣3),则可确定C(﹣4,2),然后利用顶点式求出抛物线解析式;(3)通过解方程﹣(x+4)2+2=0得到D(﹣6,0),E(﹣2,0),利用S△ABC=S△ACM+S△BCM,可求出S△ABC=10,设P(t,﹣t2﹣4t﹣6),所以•(﹣2+6)•|﹣t2﹣4t﹣6|=•20,然后解绝对值方程求出t即可得到P点坐标.天津市重点中学九年级上学期期中考试数学试卷(四)一、选择题1、下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是(

)A、B、C、D、2、如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是(

)A、30°B、40°C、50°D、60°3、如图,已知⊙O的半径为5cm,弦AB=8cm,则圆心O到弦AB的距离是(

)A、1cmB、2cmC、3cmD、4cm4、已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是(

)A、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论