版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
压轴小题09逻辑推理解决排列组合与二项式定理、事件概率与离散型随机变量分布列综合问题压轴压轴秘籍1.事件的分类确定事件必然事件在条件S下,一定会发生的事件叫做相对于条件S的必然事件不可能事件在条件S下,一定不会发生的事件叫做相对于条件S的不可能事件随机事件在条件S下,可能发生也可能不发生的事件叫做相对于条件S的随机事件2.事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇BA=B并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)互斥事件若A∩B为不可能事件,则称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件A∩B=∅;P(A∪B)=P(A)+P(B)=1互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=eq\f(nA,n)为事件A出现的频率.(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率.古典概型特点(1)试验中所有可能出现的基本事件只有有限个,即有限性.(2)每个基本事件发生的可能性相等,即等可能性.古典概型概率公式P(A)=eq\f(A包含的基本事件的个数,基本事件的总数)=eq\f(m,n).求古典概型概率的步骤(1)判断试验的结果是否为等可能事件,设出所求事件A;(2)分别求出基本事件的总数n与所求事件A中所包含的基本事件个数m;(3)利用公式P(A)=eq\f(m,n),求出事件A的概率.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).②若事件B与事件A互为对立事件,则P(A)=1-P(B).概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).判断互斥、对立事件的两种方法(1)定义法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.(2)集合法①若各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.②事件A的对立事件eq\x\to(A)所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.事件的相互独立性(1)定义:设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.(2)性质:①若事件A与B相互独立,则P(B|A)=P(B),P(A|B)=P(A),P(AB)=P(A)P(B).②如果事件A与B相互独立,那么A与eq\x\to(B),eq\x\to(A)与B,eq\x\to(A)与eq\x\to(B)也相互独立.互斥事件强调两事件不可能同时发生,即P(AB)=0,相互独立事件则强调一个事件的发生与否对另一个事件发生的概率没有影响.条件概率条件概率的定义条件概率的性质已知B发生的条件下,A发生的概率,称为B发生时A发生的条件概率,记为P(A|B).当P(B)>0时,我们有P(A|B)=eq\f(PA∩B,PB).(其中,A∩B也可以记成AB)类似地,当P(A)>0时,A发生时B发生的条件概率为P(B|A)=eq\f(PAB,PA)(1)0≤P(B|A)≤1,(2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)P(B|A)与P(A|B)易混淆为等同前者是在A发生的条件下B发生的概率,后者是在B发生的条件下A发生的概率.条件概率的三种求法定义法先求P(A)和P(AB),再由P(B|A)=eq\f(PAB,PA)求P(B|A)基本事件法借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件AB所包含的基本事件数n(AB),得P(B|A)=eq\f(nAB,nA)缩样法缩小样本空间的方法,就是去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解,它能化繁为简全概率公式一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,BΩ=B(A1+A2+…+An)=BA1+BA2+…+BAn,有P(B)=,此公式为全概率公式.(1)计算条件概率除了应用公式P(B|A)=eq\f(P(AB),P(A))外,还可以利用缩减公式法,即P(B|A)=eq\f(n(AB),n(A)),其中n(A)为事件A包含的样本点数,n(AB)为事件AB包含的样本点数.(2)全概率公式为概率论中的重要公式,它将对一个复杂事件A的概率的求解问题,转化为了在不同情况下发生的简单事件的概率的求和问题.贝叶斯公式一般地,设是一组两两互斥的事件,有且,则对任意的事件有离散型随机变量定义随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则表Xx1x2…xi…xnPp1p2…pi…pn称为离散型随机变量X的概率分布列.(2)离散型随机变量的分布列的性质:①pi≥0(i=1,2,…,n);②p1+p2+…+pn=1.离散型随机变量均值(1)一般地,若离散型随机变量X的分布列为:Xx1x2…xi…xnPp1p2…pi…pn则称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)若Y=aX+b,其中a,b为常数,则Y也是随机变量,且E(aX+b)=aE(X)+b.(3)①若X服从两点分布,则E(X)=p;②若X~B(n,p),则E(X)=np.离散型随机变量方差(1)设离散型随机变量X的分布列为Xx1x2…xi…xnPp1p2…pi…pn则(xi-E(X))2描述了xi(i=1,2,…,n)相对于均值E(X)的偏离程度.而D(X)=eq\o(∑,\s\up6(n),\s\do4(i=1))(xi-E(X))2pi为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度,称D(X)为随机变量X的方差,并称其算术平方根eq\r(DX)为随机变量X的标准差.(2)D(aX+b)=a2D(X).(3)若X服从两点分布,则D(X)=p(1-p).(4)若X~B(n,p),则D(X)=np(1-p).独立重复试验与二项分布独立重复试验二项分布定义在相同条件下重复做的n次试验称为n次独立重复试验在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率计算公式Ai(i=1,2,…,n)表示第i次试验结果,则P(A1A2A3…An)=P(A1)P(A2)…P(An)在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=Ceq\o\al(k,n)pk(1-p)n-k(k=0,1,2,…,n)独立重复试验与二项分布问题的常见类型及解题策略(1)在求n次独立重复试验中事件恰好发生k次的概率时,首先要确定好n和k的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n和变量的概率,继而求得概率.两点分布X01P1-pp这样的分布列叫做两点分布列.如果随机变量X的分布列为两点分布列,就称X服从两点分布,而称p=P(X=1)为成功概率.超几何分布列一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为P(X=k)=eq\f(C\o\al(k,M)C\o\al(n-k,N-M),C\o\al(n,N)),k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称分布列为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布.X01…mPeq\f(C\o\al(0,M)C\o\al(n-0,N-M),C\o\al(n,N))eq\f(C\o\al(1,M)C\o\al(n-1,N-M),C\o\al(n,N))…eq\f(C\o\al(m,M)C\o\al(n-m,N-M),C\o\al(n,N))正态分布正态曲线的特点(1)曲线位于x轴上方,与x轴不相交;(2)曲线是单峰的,它关于直线x=μ对称;(3)曲线在x=μ处达到峰值eq\f(1,σ\r(2π));(4)曲线与x轴之间的面积为1;(5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移;(6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.正态分布的三个常用数据(1)P(μ-σ<X≤μ+σ)=0.6826;(2)P(μ-2σ<X≤μ+2σ)=0.9544;(3)P(μ-3σ<X≤μ+3σ)=0.9974.分类加法计数原理做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1+m2+…+mn种不同的方法.分步乘法计数原理做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有mn种不同的方法.那么完成这件事共有N=m1×m2×…×mn种不同的方法.分类加法计数原理和分步乘法计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.使用分类加法计数原理时两个注意点(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.利用分步乘法计数原理解题时三个注意点(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.(3)对完成每一步的不同方法数要根据条件准确确定.应用两个计数原理的难点在于明确分类和分步.分类要做到“不重不漏”,正确把握分类标准是关键;分步要做到“步骤完整”,步步相连能将事件完成,较复杂的问题可借助图表完成.排列、组合的定义排列的定义从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列组合的定义合成一组,叫做从n个不同元素中取出m个元素的一个组合排列数、组合数的定义、公式、性质排列数组合数定义从n个不同元素中取出m(m≤n,m,n∈N*)个元素的所有不同排列的个数从n个不同元素中取出m(m≤n,m,n∈N*)个元素的所有不同组合的个数公式Aeq\o\al(m,n)=n(n-1)(n-2)…(n-m+1)=eq\f(n!,n-m!)Ceq\o\al(m,n)=eq\f(A\o\al(m,n),A\o\al(m,m))=eq\f(nn-1n-2…n-m+1,m!)性质Aeq\o\al(n,n)=n!,0!=1Ceq\o\al(0,n)=1,Ceq\o\al(m,n)=Ceq\o\al(n-m,n),Ceq\o\al(m,n)+Ceq\o\al(m-1,n)=Ceq\o\al(m,n+1)求解排列应用问题方法汇总直接法把符合条件的排列数直接列式计算优先法优先安排特殊元素或特殊位置捆绑法把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中定序问题除法处理对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列对于某些顺序一定的元素(m个)的排列问题,可先把这些元素与其他元素一起(共n个)进行排列,然后用总排列数Aeq\o\al(n,n)除以m个顺序一定的元素之间的全排列数Aeq\o\al(m,m),即得到不同排法种eq\f(A\o\al(n,n),A\o\al(m,m))=Aeq\o\al(n-m,n).间接法正难则反、等价转化的方法分组分配平均分组、部分平均分组1.对不同元素的分配问题(1)对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以Aeq\o\al(n,n)(n为均分的组数),避免重复计数.(2)对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.(3)对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.隔板法将个相同元素放入个不同的盒内,且每盒不空,则不同的方法共有种。解决此类问题常用的方法是“隔板法”,因为元素相同,所以只需考虑每个盒子里所含元素个数,则可将这个元素排成一列,共有个空,使用个“挡板”进入空档处,则可将这个元素划分为个区域,刚好对应那个盒子环排问题(1)把个不同的元素围成一个环状,排法总数为(2)个不同的元素围成一圈,个元素相邻,符合条件的排列数为(3)个不同的元素围成一圈,个元素不相邻,符合条件的排列数为涂色问题涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可。压轴训练压轴训练一、单选题1.(2023秋·江苏南通·高三统考阶段练习)15个人围坐在圆桌旁,从中任取4人,他们两两互不相邻的概率是(
)A. B. C. D.2.(2022·江苏盐城·江苏省滨海中学校考模拟预测)用1,2,3,4,5,6组成六位数(没有重复数字),在任意相邻两个数字的奇偶性不同的条件下,1和2相邻的概率是(
)A. B. C. D.3.(2023春·江苏苏州·高三统考开学考试)将六枚棋子A,B,C,D,E,F放置在2×3的棋盘中,并用红、黄、蓝三种颜色的油漆对其进行上色(颜色不必全部选用),要求相邻棋子的颜色不能相同,且棋子A,B的颜色必须相同,则一共有(
)种不同的放置与上色方式A.11232 B.10483 C.10368 D.56164.(2023·江苏南通·统考模拟预测)在空间直角坐标系中,,则三棱锥内部整点(所有坐标均为整数的点,不包括边界上的点)的个数为(
)A. B. C. D.5.(2022·江苏·高三专题练习)现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,以下说法正确的是(
)A.每人都安排一项工作的不同方法数为54B.每人都安排一项工作,每项工作至少有一人参加,则不同的方法数为C.如果司机工作不安排,其余三项工作至少安排一人,则这5名同学全部被安排的不同方法数为D.每人都安排一项工作,每项工作至少有一人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是6.(2022秋·江苏常州·高三校考阶段练习)由1,2,3,4,5组成的没有重复数字的五位数,从中任意抽取一个,则其恰好为“前3个数字保持递减,后3个数字保持递增”(如五位数“43125”,前3个数字“431”保持递减,后3个数字“125”保持递增)的概率是(
)A. B. C. D.7.(2022秋·江苏南通·高三校考期中)对于一个古典概型的样本空间和事件A,B,C,D,其中,,,,,,,,则(
)A.A与B不互斥 B.A与D互斥但不对立C.C与D互斥 D.A与C相互独立8.(2022秋·江苏常州·高三校联考阶段练习)已知,则的值为(
)A. B.0 C.1 D.29.(2023·江苏·金陵中学校联考三模)已知一组数据丢失了其中一个,另外六个数据分别是10,8,8,11,16,8,若这组数据的平均数、中位数、众数依次成等差数列,则丢失数据的所有可能值的和为A.12 B.20 C.25 D.2710.(2022·江苏·高三专题练习)已知,,其中为展开式中项系数,,则下列说法不正确的有(
)A.,B.C.D.是,,,…,是最大值11.(2023秋·江苏镇江·高三统考开学考试)某校在校庆期间举办羽毛球比赛,某班派出甲、乙两名单打主力,为了提高两位主力的能力,体育老师安排了为期一周的对抗训练,比赛规则如下:甲、乙两人每轮分别与体育老师打2局,当两人获胜局数不少于3局时,则认为这轮训练过关;否则不过关.若甲、乙两人每局获胜的概率分别为,,且满足,每局之间相互独立.记甲、乙在轮训练中训练过关的轮数为,若,则从期望的角度来看,甲、乙两人训练的轮数至少为(
)A.27 B.24 C.32 D.28二、多选题12.(2023秋·江苏镇江·高三江苏省镇江第一中学校考阶段练习)随着春节的临近,小王和小张等4位同学准备互相送祝福.他们每人写了一个祝福的贺卡,这四张贺卡收齐后让每人从中随机抽取一张作为收到的新春祝福,则(
)A.小王和小张恰好互换了贺卡的概率为B.已知小王抽到的是小张写的贺卡的条件下,小张抽到小王写的贺卡的概率为C.恰有一个人抽到自己写的贺卡的概率为D.每个人抽到的贺卡都不是自己写的概率为13.(2023秋·江苏苏州·高三统考期末)中国蹴鞠已有两千三百多年的历史,于2004年被国际足联正式确认为世界足球运动的起源.蹴鞠在2022年卡塔尔世界杯上再次成为文化交流的媒介,走到世界舞台的中央,诉说中国传统非遗故事.为弘扬中华传统文化,我市四所高中各自组建了蹴鞠队(分别记为“甲队”“乙队”“丙队”“丁队”)进行单循环比赛(即每支球队都要跟其他各支球队进行一场比赛),最后按各队的积分排列名次(积分多者名次靠前,积分同者名次并列),积分规则为每队胜一场得3分,平一场得1分,负一场得0分.若每场比赛中两队胜、平、负的概率都为,则在比赛结束时(
)A.四支球队的积分总和可能为15分B.甲队胜3场且乙队胜1场的概率为C.可能会出现三支球队积分相同且和第四支球队积分不同的情况D.丙队在输了第一场的情况下,其积分仍超过其余三支球队的积分的概率为14.(2023·江苏南通·统考三模)设,是一个随机试验中的两个事件,且,,,则(
)A. B.C. D.15.(2022·江苏·高三专题练习)如图,在某城市中,、两地之间有整齐的方格形道路网,其中、、、是道路网中位于一条对角线上的个交汇处.今在道路网、处的甲、乙两人分别要到、处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达、处为止.则下列说法正确的是(
)A.甲从到达处的方法有种B.甲从必须经过到达处的方法有种C.甲、乙两人在处相遇的概率为D.甲、乙两人相遇的概率为16.(2022·江苏盐城·江苏省滨海中学校考模拟预测)十七世纪至十八世纪的德国数学家莱布尼兹是世界上第一个提出二进制记数法的人,用二进制记数只需数字0和1,对于整数可理解为逢二进,例如:自然数1在二进制中就表示为1,2表示为10,3表示为11,7表示为111,即,,其中,或,记为上述表示中0的个数,如,.则下列说法中正确的是(
).A.B.C.D.1到127这些自然数的二进制表示中的自然数有35个17.(2022·江苏南京·金陵中学校考二模)某人投了100次篮,设投完前n次的命中率为.其中,….100.已知,则一定存在使得(
)A. B. C. D.18.(2022秋·江苏南京·高三校联考开学考试)设,,,则下列结论中正确的是(
)A.B.当时,C.若,,则D.当,时,19.(2022春·江苏苏州·高三江苏省昆山中学校考阶段练习)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,.假设p表示该种微生物经过多代繁殖后临近灭绝的概率,且p是关于x的方程:的一个最小正实根,则下列说法正确的是(
)A.1是方程:的根B.当时,C.当时,D.当时,20.(2022·江苏泰州·统考模拟预测)设一组样本的统计数据为:,其中n∈N*,.已知该样本的统计数据的平均数为,方差为,设函数,x∈R.则下列说法正确的是(
)A.设b∈R,则的平均数为B.设a∈R,则的方差为C.当x=时,函数有最小值D.21.(2022秋·江苏苏州·高三苏州中学校联考阶段练习)乒乓球(tabletennis),被称为中国的“国球”,是一种世界流行的球类体育项目,是推动外交的体育项目,被誉为“小球推动大球”.某次比赛采用五局三胜制,当参赛甲、乙两位中有一位赢得三局比赛时,就由该选手晋级而比赛结束.每局比赛皆须分出胜负,且每局比赛的胜负不受之前已赛结果影响.假设甲在任一局赢球的概率为,实际比赛局数的期望值记为,下列说法正确的是(
)A.三局就结束比赛的概率为 B.的常数项为3C.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度城市公园插花艺术交流活动合同4篇
- 2025年投资合作补充协议范本:人工智能应用合作专项3篇
- 二零二五年电子智能穿戴设备生产垫资协议3篇
- 二零二五年度园林古树名木保护与绿化服务合同4篇
- 三年级数学计算题专项练习及答案集锦
- 二年级数学(上)计算题专项练习汇编
- 二年级数学(上)计算题专项练习汇编
- 教育领域的小学数学教育创新探索
- 教育领域的安全文化塑造与健康习惯养成探讨
- 教育领域的新趋势以家庭为单位的自信心培养计划
- 上海纽约大学自主招生面试试题综合素质答案技巧
- 办公家具项目实施方案、供货方案
- 2022年物流服务师职业技能竞赛理论题库(含答案)
- 危化品安全操作规程
- 连锁遗传和遗传作图
- DB63∕T 1885-2020 青海省城镇老旧小区综合改造技术规程
- 高边坡施工危险源辨识及分析
- 中海地产设计管理程序
- 简谱视唱15942
- 《城镇燃气设施运行、维护和抢修安全技术规程》(CJJ51-2006)
- 项目付款审核流程(visio流程图)
评论
0/150
提交评论