版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
压轴小题03奇思妙解函数与导数综合问题压轴压轴秘籍八大常用函数的求导公式(为常数);例:,,,,,,,导数的四则运算和的导数:差的导数:积的导数:(前导后不导前不导后导)商的导数:,复合函数的求导公式函数中,设(内函数),则(外函数)导数的几何意义导数的几何意义导数的几何意义是曲线在某点处切线的斜率直线的点斜式方程直线的点斜式方程:已知直线过点,斜率为,则直线的点斜式方程为:用导数判断原函数的单调性设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.判别是极大(小)值的方法当函数在点处连续时,(1)如果在附近的左侧,右侧,则是极大值;(2)如果在附近的左侧,右侧,则是极小值.能成立(有解)问题常见类型假设为自变量,其范围设为,为函数;为参数,为其表达式,(1)若的值域为①,则只需要,则只需要②,则只需要,则只需要(2)若的值域为①,则只需要(注意与(1)中对应情况进行对比),则只需要②,则只需要(注意与(1)中对应情况进行对比),则只需要能成立(有解)问题的解决策略=1\*GB3①构造函数,分类讨论;②部分分离,化为切线;③完全分离,函数最值;=4\*GB3④换元分离,简化运算;在求解过程中,力求“脑中有‘形’,心中有‘数’”.依托端点效应,缩小范围,借助数形结合,寻找临界.一般地,不等式恒成立、方程或不等式有解问题设计独特,试题形式多样、变化众多,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养起到了积极的作用,成为高考的一个热点.利用导数研究函数零点的方法(1)通过最值(极值)判断零点个数的方法借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.利用曲线的切线进行放缩证明不等式设上任一点的横坐标为,则过该点的切线方程为,即,由此可得与有关的不等式:,其中,,等号当且仅当时成立.特别地,当时,有;当时,有.设上任一点的横坐标为,则过该点的切线方程为,即,由此可得与有关的不等式:,其中,,等号当且仅当时成立.特别地,当时,有;当时,有.利用切线进行放缩,能实现以直代曲,化超越函数为一次函数.利用曲线的相切曲线进行放缩证明不等式由图可得;由图可得;由图可得,(),();由图可得,(),().综合上述两种生成,我们可得到下列与、有关的常用不等式:与有关的常用不等式:(1)();(2)().与有关的常用不等式:(1)();(2)();(3)(),();(4)(),().用取代的位置,相应的可得到与有关的常用不等式.压轴训练压轴训练一、单选题1.(2023春·江苏·高三江苏省前黄高级中学校联考阶段练习)若关于的不等式对任意的恒成立,则整数的最大值为(
)A. B.0 C.1 D.32.(2023秋·江苏盐城·高三盐城市伍佑中学校联考阶段练习)对于实数,不等式恒成立,则实数m的取值范围为(
)A. B. C. D.3.(2023秋·江苏苏州·高三苏州中学校考阶段练习)若关于x的不等式对于任意恒成立,则整数k的最大值为(
)A.-2 B.-1 C.0 D.14.(2023·江苏·统考模拟预测)已知,,对于,恒成立,则的最小值为(
)A. B.-1 C. D.-25.(2023·江苏南通·江苏省如皋中学校考模拟预测)已知直线与函数的图象恰有两个切点,设满足条件的k所有可能取值中最大的两个值分别为和,且,则(
)A. B. C. D.6.(2023春·江苏南通·高三海安高级中学校考阶段练习)对于两个函数与,若这两个函数值相等时对应的自变量分别为,则的最小值为(
)A.-1 B. C. D.7.(2023·江苏扬州·统考模拟预测)已知函数的导函数为和的定义域均为为偶函数,也为偶函数,则下列不等式一定成立的是(
).A. B.C. D.8.(2022秋·江苏徐州·高三期末)设,若函数有且只有三个零点,则实数的取值范围为(
)A. B. C. D.9.(2023秋·江苏苏州·高三统考期末)已知偶函数满足且,当时,,关于的不等式在上有且只有200个整数解,则实数的取值范围为A. B.C. D.10.(2023秋·江苏泰州·高三泰州中学校考阶段练习)已知函数有三个不同的零点.其中,则的值为(
)A.1 B. C. D.11.(2023·江苏常州·校考一模)已知实数,,满足,,则的最小值是(
)A. B. C. D.12.(2023春·江苏南京·高三南京市宁海中学校考阶段练习)若正实数a,b满足,且,则下列不等式一定成立的是(
)A. B. C. D.13.(2023秋·江苏泰州·高三泰州中学校考开学考试)若关于的方程有三个不等的实数解,且,其中,为自然对数的底数,则的值为(
)A. B. C. D.14.(2023秋·江苏南通·高三统考阶段练习)已知函数,若对任意,,则实数的取值范围是(
)A. B. C. D.15.(2023·江苏常州·校考一模)在信息时代,信号处理是非常关键的技术,而信号处理背后的“功臣”就是正弦型函数.函数的图象可以近似的模拟某种信号的波形,则下列判断中不正确的是(
)A.函数为周期函数,且为其一个周期B.函数的图象关于点对称C.函数的图象关于直线对称D.函数的导函数的最大值为4.16.(2023·江苏苏州·苏州中学校考模拟预测)下列不等式正确的是(其中为自然对数的底数,,)(
)A. B. C. D.17.(2023·江苏南京·南京市第五高级中学校考模拟预测)已知是函数的零点,是函数的零点,且满足,则实数的最小值是(
)A. B. C. D.18.(2023秋·江苏南通·高三统考期末)两条曲线与存在两个公共点,则实数的取值范围为(
)A. B. C. D.19.(2023秋·江苏南京·高三南京师范大学附属中学江宁分校校联考期末)若存在实数和,使得函数和对其公共定义域上的任意实数都满足:恒成立,则称直线为和的一条“划分直线”.列命题正确的是(
)A.函数和之间没有“划分直线”B.是函和之间存在的唯一的一条“划分直线”C.是函数和之间的一条“划分直线”D.函数和之间存在“划分直线”,且的取值范围为20.(2023春·江苏南京·高三南京师大附中校考开学考试)已知函数有两个极值点,则实数a的取值范围(
)A. B.C. D.二、多选题21.(2023·江苏南京·校考一模)定义在上的函数满足,,则下列说法正确的是(
)A.在处取得极大值,极大值为B.有两个零点C.若在上恒成立,则D.22.(2023秋·江苏扬州·高三扬州中学校考阶段练习)已知函数,,若与图象的公共点个数为,且这些公共点的横坐标从小到大依次为,,…,,则下列说法正确的有(
)A.若,则 B.若,则C.若,则 D.若,则23.(2023·江苏淮安·江苏省郑梁梅高级中学校考模拟预测)已知函数,其中为自然对数的底数,为其导函数,则下列判断正确的是(
)A.在单调递增B.在仅有1个零点C.在有1个极大值D.当时,24.(2023秋·江苏南通·高三统考期末)若函数是定义在上不恒为零的可导函数,对任意的,均满足:,,记,则(
)A. B.C. D.25.(2023秋·江苏扬州·高三校联考期末)已知函数有两个极值点,且,则下列结论正确的是(
).A. B.C. D.26.(2023春·江苏南通·高三校考开学考试)若函数有两个极值点,且,则下列结论正确的是(
)A. B.C. D.27.(2023·江苏南通·校联考模拟预测)已知O为坐标原点,曲线在点处的切线与曲线相切于点,则(
)A. B.C.的最大值为0 D.当时,28.(2023秋·江苏南京·高三南京外国语学校校考阶段练习)已知函数,则下列结论正确的是(
)A.当时,若有三个零点,则b的取值范围为B.若满足,则C.若过点可作出曲线的三条切线,则D.若存在极值点,且,其中,则29.(2023·江苏·江苏省邗江中学校联考模拟预测)若函数是定义域为的单调函数,且对任意的,都有,且方程在区间上有两个不同解,则实数的取值可能为(
)A.0 B.1 C.2 D.330.(2023秋·江苏镇江·高三江苏省丹阳高级中学校考阶段练习)已知函数,,则(
)A.函数在上存在唯一极值点B.为函数的导函数,若函数有两个零点,则实数的取值范围是C.若对任意,不等式恒成立,则实数的最小值为D.若,则的最大值为31.(2023·江苏盐城·盐城中学校考模拟预测)已知,,若与图像的公共点个数为,且这些公共点的横坐标从小到大依次为,则下列说法正确的是(
)A.若,则B.若,则C.若,则D.若,则32.(2023秋·江苏南京·高三校联考阶段练习)已知函数,则下列说法正确的是(
)A.当时,在上单调递增B.若的图象在处的切线与直线垂直,则实数C.当时,不存在极值D.当时,有且仅有两个零点,且33.(2023秋·江苏无锡·高三校考开学考试)已知函数,若不等式对任意恒成立,则实数的取值可能是(
)A. B. C. D.34.(2023秋·江苏镇江·高三统考开学考试)函数,关于x的方程,则下列选项正确的是(
)A.函数的值域为B.函数的单调减区间为C.当时,则方程有6个不相等的实数根D.若方程有3个不相等的实数根,则m的取值范围是35.(2023秋·江苏常州·高三常州高级中学校考开学考试)已知函数,其中,则(
)A.不等式对恒成立B.若关于的方程有且只有两个实根,则的取值范围为C.方程共有4个实根D.若关于的不等式恰有1个正整数解,则的取值范围为36.(2023秋·江苏徐州·高三校考阶段练习)已知函数及其导函数满足,且,则下列说法正确的是(
)A.在上有极小值 B.的最小值为C.在上单调递增 D.的最小值为37.(2023秋·江苏南通·高三海安高级中学校考阶段练习)已知函数,则以下判断正确的是(
)A.函数的零点是B.不等式的解集是.C.设,则在上不是单调函数D.对任意的,都有.38.(2023秋·江苏常州·高三校联考阶段练习)已知函数,其中,则(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中领导听评课记录
- 始兴县2024年一级造价工程师《土建计量》模拟试题含解析
- 萍乡市安源区2024年一级造价工程师《土建计量》统考试题含解析
- 河南省郑州市外国语中学2024-2025学年九年级上学期12月月考道德与法治试题(含答案)
- 【课件】固定资产投资统计制度培训
- 历史规律与社会进步模板
- 大庆景园中学《整式的除法》课件
- 蓝色商务风汽车行业商业计划书模板
- 《火用分析基础》课件
- 《文献检索新思维》课件
- 物业停车场库错峰停车实施方案参考借鉴版课件
- 机动车检验人员比对试验结果分析表
- “三位一体、一专多能”高职学前教育人才培养模式改革与实践
- 机场管制5 - 跑道侵入
- 铸钢铁中外牌号对照
- 建筑工程防水要求的地面蓄水试验记录
- 中小学实验室管理员培训课件(276页PPT)
- SPSS数据分析与应用全书电子教案完整版ppt整套教学课件最全教学教程
- 莱宝真空泵说明书中文(课堂PPT)
- 房屋加装电梯施工项目施工组织设计方案
- HR工作法律手册(人力资源管理全案-法务篇)
评论
0/150
提交评论