高中人教A版数学课时素养检测8-5-1直线与直线平行_第1页
高中人教A版数学课时素养检测8-5-1直线与直线平行_第2页
高中人教A版数学课时素养检测8-5-1直线与直线平行_第3页
高中人教A版数学课时素养检测8-5-1直线与直线平行_第4页
高中人教A版数学课时素养检测8-5-1直线与直线平行_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时素养检测二十六直线与直线平行(30分钟60分)一、选择题(每小题4分,共24分,多选题全部选对得4分,选对但不全对的得2分,有选错的得0分)1.若∠AOB=∠A1O1B1,且OA∥O1A1,射线OA与O1AA.OB∥O1B1且方向相同B.OB∥O1B1,方向可能不同C.OB与O1B1不平行D.OB与O1B1不一定平行【解析】选D.当∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同时,OB与O1B2.如图所示,在三棱锥SMNP中,E,F,G,H分别是棱SN,SP,MN,MP的中点,则EF与HG的位置关系是()A.平行 B.相交C.异面 D.平行或异面【解析】选A.因为E,F分别是SN和SP的中点,所以EF∥PN.同理可证HG∥PN,所以EF∥HG.3.若两个三角形不在同一平面内,它们的边两两对应平行,那么这两个三角形()A.全等 B.相似C.仅有一个角相等 D.全等或相似【解析】选D.由等角定理知,这两个三角形的三个角分别对应相等.4.在正六棱柱ABCDEFA1B1C1D1E1FA.2 B.3 C.4 D.5【解析】选D.在正六棱柱ABCDEFA1B1C1D1E1F1的任意两个顶点连线中与AB平行的有DE,CF,A1B1,D1E1和C15.如图,在长方体ABCDA1B1C1D1中,E,F分别为B1O和C1A.一条 B.两条 C.三条 D.四条【解析】选D.因为E,F分别为B1O和C1O的中点,所以B1C1∥因为BC∥AD∥A1D1∥B1C16.(多选题)给出下列四个说法,其中正确的是()A.在空间中,若两条直线不相交,则它们一定平行B.平行于同一条直线的两条直线平行C.一条直线和两条平行直线中的一条相交,那么它也和另一条相交D.空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c【解析】选BD.选项A在空间中,两条直线不相交,可能平行,也可能异面,故选项A不正确;选项B由基本事实4可知正确;选项C不正确,一条直线和两条平行直线中的一条相交,那么它和另一条可能异面,也可能相交,选项D由基本事实4可知正确.二、填空题(每小题4分,共8分)7.如图,在三棱柱ABCA1B1C1中,E、F分别是AB、AC上的点,且AE∶EB=AF∶FC,则EF与B1C1的位置关系是【解析】因为在△ABC中,AE∶EB=AF∶FC,所以EF∥BC,又因为BC∥B1C1,所以EF∥B1C答案:平行8.如图,在长方体ABCDA1B1C1D1(1)直线A1B与直线D1C的位置关系是__________(2)直线A1B与直线B1C的位置关系是__________【解析】(1)在长方体ABCDA1B1C1D1中,A1D1所以四边形A1BCD1为平行四边形,所以A1B∥D1C(2)直线A1B与直线B1C答案:(1)平行(2)异面三、解答题(每小题14分,共28分)9.已知E,F,G,H为空间四边形ABCD的边AB,BC,CD,DA上的点,若QUOTE=QUOTE=QUOTE,QUOTE=QUOTE=QUOTE,证明:四边形EFGH为梯形.【证明】如图,在△ABD中,因为QUOTE=QUOTE=QUOTE,所以EH∥BD且EH=QUOTEBD.在△BCD中,因为QUOTE=QUOTE=QUOTE,所以FG∥BD且FG=QUOTEBD,所以EH∥FG且EH>FG,所以四边形EFGH为梯形.10.在梯形ABCD中,AB∥CD,E,F分别为BC和AD的中点,将平面DCEF沿EF翻折起来,使CD到C′D′的位置,G,H分别为AD′和BC′的中点,求证:四边形EFGH为平行四边形.【证明】因为在梯形ABCD中,AB∥CD,E,F分别为BC,AD的中点,所以EF∥AB且EF=QUOTE(AB+CD),又C′D′∥EF,EF∥AB,所以C′D′∥AB.因为G,H分别为AD′,BC′的中点,所以GH∥AB且GH=QUOTE(AB+C′D′)=QUOTE(AB+CD),所以GHEF,所以四边形EFGH为平行四边形.(30分钟60分)一、选择题(每小题4分,共16分,多选题全部选对得4分,选对但不全对的得2分,有选错的得0分)1.分别和两条异面直线平行的两条直线的位置关系是()A.一定平行 B.一定相交C.一定异面 D.相交或异面【解析】选D.画出图形,得到结论.如图①,分别与异面直线a,b平行的两条直线c,d是相交关系;如图②,分别与异面直线a,b平行的两条直线c,d是异面关系.2.分别在两个平面内的两条直线的位置关系是()A.异面 B.平行C.相交 D.以上都有可能【解析】选D.如图,在长方体ABCDA1B1C1D1中,直线AD1在平面AA1D1D中,直线BB1,BC1在平面BB1C1C中,但AD1∥BC1,AD1与BB3.若直线a与直线b,c所成的角相等,则b,c的位置关系为()A.相交 B.平行C.异面 D.以上答案都有可能【解析】选D.可能相交,可能平行,可能异面,如图所示.4.(多选题)下列说法中,正确的结论有()A.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等B.如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等C.如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补D.如果两条直线同时平行于第三条直线,那么这两条直线互相平行【解析】选BD.选项A中,如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故选项A错误;选项B中,如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等,故选项B正确;选项C中,如果一个角的两边和另一个角的两边分别垂直,这两个角的关系不确定,既可能相等也可能互补,也可能既不相等,也不互补;选项D中,如果两条直线同时平行于第三条直线,那么这两条直线平行,故选项D正确.二、填空题5.(4分)空间四边形ABCD中,M,N分别为AB,CD的中点,则MN__

QUOTE(AC+BD).(填“≥”“>”“≤”“<”或“=”)【解析】取BC中点E,连接EM、EN,则相加EM+EN=QUOTE(AC+BD),又EM+EN>MN,所以MN<QUOTE(AC+BD).答案:<三、解答题(共40分)6.(12分)如图,已知线段AA1、BB1、CC1交于O点,且QUOTE=QUOTE=QUOTE.求证:△ABC∽△A1B1C1【证明】因为AA1与BB1交于点O,且QUOTE=QUOTE,所以A1B1∥AB,同理A1C1∥AC,B1C1又因为A1B1和AB,A1C1所以∠BAC=∠B1A1同理∠ABC=∠A1B1C1所以△ABC∽△A1B1C17.(14分)E,F分别是长方体A1B1C1D1ABCD的棱A1A,C求证:四边形B1EDF是平行四边形.【证明】设Q是DD1的中点,连接EQ、QC1,因为E是AA1的中点,所以EQA1D1,又在矩形A1B1C1D1中,A1D1B1C1所以EQB1C1(基本事实4),所以四边形EQC1B1为平行四边形,所以B1EC1Q,又因为Q、F是矩形DD1C所以QDC1F,所以四边形DQC1F所以C1QDF,又因为B1EC1Q,所以B1EDF,所以四边形B1EDF为平行四边形.8.(14分)如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥AD,BC=QUOTEAD,BE∥FA,BE=QUOTEFA,G,H分别为FA,FD的中点.(1)证明:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?【解析】(1)由已知FG=GA,FH=HD,可得GH∥AD,GH=QUOTEAD.又BC∥AD,BC=QUOTEAD,所以GH∥BC,GH=BC,所以四边形BCHG为平行四边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论