人教版初中数学九年级上册单元小结及期末复习(含单元检测试卷)_第1页
人教版初中数学九年级上册单元小结及期末复习(含单元检测试卷)_第2页
人教版初中数学九年级上册单元小结及期末复习(含单元检测试卷)_第3页
人教版初中数学九年级上册单元小结及期末复习(含单元检测试卷)_第4页
人教版初中数学九年级上册单元小结及期末复习(含单元检测试卷)_第5页
已阅读5页,还剩339页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版初中数学九年级上册单元小结及期末复习小结与复习第二十一章一元二次方程一、一元二次方程的基本概念1.定义:只含有一个未知数的整式方程,并且都可以化为ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程.2.一般形式:ax2+bx+c=0(a,b,c为常数,a≠0)要点梳理3.项数和系数:

ax2+bx+c=0(a,b,c为常数,a≠0)一次项:ax2

一次项系数:a二次项:bx二次项系数:b常数项:c4.注意事项:(1)含有一个未知数; (2)未知数的最高次数为2;(3)二次项系数不为0;(4)整式方程.

二、解一元二次方程的方法一元二次方程的解法适用的方程类型直接开平方法配方法公式法因式分解x2+px+q=0

(p2-4q≥0)(x+m)2=n(n≥0)ax2+bx+c=0(a≠0,b2-4ac≥0)(x+m)

(x+n)=0各种一元二次方程的解法及使用类型三、一元二次方程在生活中的应用列方程解应用题的一般步骤:审设列解检答(1)审题:通过审题弄清已知量与未知量之间的数量关系.(2)设元:就是设未知数,分直接设与间接设,应根据实际需要恰当选取设元法.(3)列方程:就是建立已知量与未知量之间的等量关系.列方程这一环节最重要,决定着能否顺利解决实际问题.(4)解方程:正确求出方程的解并注意检验其合理性.(5)作答:即写出答语,遵循问什么答什么的原则写清答语.考点一一元二次方程的定义例1

若关于x的方程(m-1)x2+mx-1=0是一元二次方程,则m的取值范围是()A.m≠1B.m=1C.m≥1D.m≠0解析

本题考查了一元二次方程的定义,即方程中必须保证有二次项(二次项系数不为0),因此它的系数m-1≠0,即m≠1,故选A.A1.方程5x2-x-3=x2-3+x的二次项系数是

,一次项系数是

,常数项是

.4-20考点讲练针对训练考点二一元二次方程的根的应用解析根据一元二次方程根的定义可知将x=0代入原方程一定会使方程左右两边相等,故只要把x=0代入就可以得到以m为未知数的方程m2-1=0,解得m=±1的值.这里应填-1.这种题的解题方法我们称之为“有根必代”.例2

若关于x的一元二次方程(m-1)x2+x+m2-1=0有一个根为0,则m=

.【易错提示】求出m值有两个1和-1,由于原方程是一元二次方程,所以1不符合,应引起注意.-1针对训练2.

一元二次方程x2+px-2=0的一个根为2,则p的值为

.-1【易错提示】(1)配方法的前提是二次项系数是1;(a-b)2与(a+b)2要准确区分;(2)求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯解析

(1)配方法的关键是配上一次项系数一半的平方;(2)先求出方程x2﹣13x+36=0的两根,再根据三角形的三边关系定理,得到符合题意的边,进而求得三角形周长.考点三一元二次方程的解法例3

(1)用配方法解方程x2-2x-5=0时,原方程应变为()A.(x-1)2=6B.(x+2)2=9C.(x+1)2=6D.(x-2)2=9(2)(易错题)三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的根,则该三角形的周长为()

A.13B.15C.18D.13或18AA3.菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16B.12C.16或12D.24A针对训练4.用公式法和配方法分别解方程:x2-4x-1=0(要求写出必要解题步骤).4.用公式法和配方法分别解方程:x2-4x-1=0(要求写出必要解题步骤).考点四一元二次方程的根的判别式的应用例4

已知关于x的一元二次方程x2-3m=4x有两个不相等的实数根,则m的取值范围是()A.B.m<2C.m≥0D.m<0A【易错提示】应用根的判别式之前务必将方程化为一般形式,这样能帮助我们正确确定a,b,c的值.解析根据方程根的情况可知,此方程的根的判别式>0,即42-4×1×(-3m)=16+12m>0,解得,故选A.Δ5.下列所给方程中,没有实数根的是()A.x2+x=0B.5x2-4x-1=0C.3x2-4x+1=0D.4x2-5x+2=06.(开放题)若关于x的一元二次方程x2-x+m=0有两个不相等的实数根,则m的值可能是

(写出一个即可).D0针对训练考点五一元二次方程的根与系数的关系例5

已知一元二次方程x2-4x-3=0的两根为m,n,则m2-mn+n2=

.25解析根据根与系数的关系可知,m+n=4,mn=-3.m2-mn+n2=m2+n2-mn=(m+n)2-3mn=42-3×(-3)=25.故填25.【重要变形】针对训练7.

已知方程2x2+4x-3=0的两根分别为x1和x2,则x12+x22的值等于()A.7B.-2C.D.A考点六一元二次方程的应用

例6

某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.

(1)若公司每天的销售价为x元,则每天的销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?市场销售问题解析

本题为销售中的利润问题,其基本本数量关系用表析分如下:设公司每天的销售价为x元.单件利润销售量(件)每星期利润(元)正常销售涨价销售432x-2032-2(x-24)150其等量关系是:总利润=单件利润×销售量.解:(1)32-(x-24)×2=80-2x;(2)由题意可得(x-20)(80-2x)=150.解得

x1=25,x2=35.由题意x≤28,∴x=25,即售价应当为25元.【易错提示】销售量在正常销售的基础上进行减少.要注意验根.128例7

菜农小王种植的某种蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该种蔬菜滞销.小王为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.求平均每次下调的百分率是多少?解:设平均每次下调的百分率是x,根据题意得

5(1-x)2=3.2

解得x1=1.8(舍去),x2=0.2=20%.答:平均每次下调的百分率是20%.平均变化率问题例8

为了响应市委政府提出的建设绿色家园的号召,我市某单位准备将院内一个长为30m,宽为20m的长方形空地,建成一个矩形的花园,要求在花园中修两条纵向平行和一条弯折的小道,剩余的地方种植花草,如图所示,要是种植花草的面积为532m2,,那么小道的宽度应为多少米?(所有小道的进出口的宽度相等,且每段小道为平行四边形)解:设小道进出口的宽为xcm

(30-2x)(20-x)=532

x2-35x+34=0

x1=1x2=34(舍去)答:小道进出口的宽度应为1米.

解决有关面积问题时,除了对所学图形面积公式熟悉外,还要会将不规则图形分割或组合成规则图形,并找出各部分图形面积之间的关系,再列方程求解.(注意:这里的横坚斜小路的的宽度都相等)平移转化方法总结一元二次方程一元二次方程的定义概念:①整式方程;②一元;③二次.一般形式:ax2+bx+c=0(a≠0)一元二次方程的解法直接开平方法配方法公式法因式分解法根的判别式及根与系数的关系根的判别式:Δ=b2-4ac根与系数的关系一元二次方程的应用营销问题、平均变化率问题几何问题、数字问题课堂小结播放后答案动态显示第二十二章二次函数小结与复习要点梳理

一般地,形如

(a,b,c是常数,

__)的函数,叫做二次函数.y=ax2+bx+ca≠0[注意](1)等号右边必须是整式;(2)自变量的最高次数是2;(3)当b=0,c=0时,y=ax2是特殊的二次函数.1.二次函数的概念二次函数y=a(x-h)2+ky=ax2+bx+c开口方向对称轴顶点坐标最值a>0a<0增减性a>0a<02.二次函数的图象与性质:a>0开口向上a<0开口向下x=h(h,k)y最小=ky最大=k在对称轴左边,x↗y↘;在对称轴右边,

x↗y↗

在对称轴左边,x↗y↗;在对称轴右边,

x↗y↘y最小=y最大=3.二次函数图像的平移y=ax2左、右平移左加右减上、下平移上加下减y=-ax2写成一般形式沿x轴翻折4.二次函数表达式的求法1.一般式法:y=ax2+bx+c(a≠0)2.顶点法:y=a(x-h)2+k(a≠0)3.交点法:y=a(x-x1)(x-x2)(a≠0)5.二次函数与一元二次方程的关系

二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点,有两个重合的交点,没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.二次函数y=ax2+bx+c的图像和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式(b2-4ac)有两个交点有两个相异的实数根b2-4ac>0有两个重合的交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac<06.二次函数的应用1.二次函数的应用包括以下两个方面(1)用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问题);(2)利用二次函数的图像求一元二次方程的近似解.2.一般步骤:(1)找出问题中的变量和常量以及它们之间的函数关系;(2)列出函数关系式,并确定自变量的取值范围;(3)利用二次函数的图象及性质解决实际问题;(4)检验结果的合理性,是否符合实际意义.考点一求抛物线的顶点、对称轴、最值考点讲练例1

抛物线y=x2-2x+3的顶点坐标为________.【解析】方法一:配方,得y=x2-2x+3=(x-1)2+2,则顶点坐标为(1,2).方法二代入公式,,则顶点坐标为(1,2).(1,2)方法归纳解决此类题目可以先把二次函数y=ax2+bx+c配方为顶点式y=a(x-h)2+k的形式,得到:对称轴是直线x=h,最值为y=k,顶点坐标为(h,k);也可以直接利用公式求解.1.对于y=2(x-3)2+2的图像下列叙述正确的是(

)A.顶点坐标为(-3,2)

B.对称轴为y=3C.当x≥3时,y随x的增大而增大D.当x≥3时,y随x的增大而减小C针对训练考点二二次函数的图像与性质及函数值的大小比较例2二次函数y=-x2+bx+c的图像如图所示,若点A(x1,y1),B(x2,y2)在此函数图像上,且x1<x2<1,则y1与y2的大小关系是(

)A.y1≤y2

B.y1<y2

C.y1≥y2

D.y1>y2【解析】由图像看出,抛物线开口向下,对称轴是x=1,当x<1时,y随x的增大而增大.∵x1<x2<1,∴y1<y2.故选B.B针对训练2.下列函数中,当x>0时,y值随x值增大而减小的是()

A.y=B.y=x-1C.D.y=-3x2D针对训练考点三

二次函数y=ax2+bx+c(a≠0)的图像与系数a,b,c的关系例3已知二次函数y=ax2+bx+c的图像如图所示,下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2.其中正确的个数是(

)A.1

B.2

C.3

D.4D解析:由图像开口向下可得a<0,由对称轴在y轴左侧可得b<0,由图像与y轴交于正半轴可得c>0,则abc>0,故①正确;由对称轴x>-1可得2a-b<0,故②正确;由图像上横坐标为x=-2的点在第三象限可得4a-2b+c<0,故③正确;由图像上横坐标为x=1的点在第四象限得出a+b+c<0,由图像上横坐标为x=-1的点在第二象限得出

a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,可得(a+c)2<b2,故④正确.故选D.方法总结1.可根据对称轴的位置确定b的符号:b=0⇔对称轴是y轴;a、b同号⇔对称轴在y轴左侧;a、b异号⇔对称轴在y轴右侧.这个规律可简记为“左同右异”.2.当x=1时,函数y=a+b+c.当图像上横坐标x=1的点在x轴上方时,a+b+c>0;当图像上横坐标x=1的点在x轴上时,a+b+c=0;当图像上横坐标x=1的点在x轴下方时,a+b+c<0.同理,可由图像上横坐标x=-1的点判断a-b+c的符号.3.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是( )A.b≥-1 B.b≤-1C.b≥1

D.b≤1针对训练解析:∵二次项系数为-1<0,∴抛物线开口向下,在对称轴右侧,y的值随x值的增大而减小,由题设可知,当x>1时,y的值随x值的增大而减小,∴抛物线y=-x2+2bx+c的对称轴应在直线x=1的左侧而抛物线y=-x2+2bx+c的对称轴,即b≤1,故选择D.考点四抛物线的几何变换例4将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是(

)A.y=(x-4)2-6B.y=(x-4)2-2C.y=(x-2)2-2D.y=(x-1)2-3【解析】因为y=x2-6x+5=(x-3)2-4,所以向上平移2个单位长度,再向右平移1个单位长度后,得到的解析式为y=(x-3-1)2-4+2,即y=(x-4)2-2.故选B.3.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则可能()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向下平移4个单位B针对训练考点五二次函数表达式的确定例5已知关于x的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7,求这个二次函数的解析式.待定系数法解:设所求的二次函数为y=ax2+bx+c,由题意得:解得,

a=2,b=-3,c=5.∴所求的二次函数为y=2x2-3x+5.5.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的表达式.解:

抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同

a=1或-1

顶点在直线x=1上,且顶点到x轴的距离为5,

顶点为(1,5)或(1,-5)

所以其表达式为:(1)y=(x-1)2+5(2)y=(x-1)2-5(3)y=-(x-1)2+5(4)y=-(x-1)2-5

针对训练例6若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7解析:∵二次函数y=x2+mx的对称轴是x=3,∴

=3,解得m=-6,∴关于x的方程x2+mx=7可化为x2-6x-7=0,即(x+1)(x-7)=0,解得x1=-1,x2=7.故选D.考点六二次函数与一元二次方程例7

某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?考点七二次函数的应用解:(1)根据题意,得解得k=-1,b=120.故所求一次函数的表达式为y=-x+120.(2)W=(x-60)•(-x+120)=-x2+180x-7200=-(x-90)2+900,∵抛物线的开口向下,∴当x<90时,W随x的增大而增大,而60≤x≤60×(1+45%),即60≤x≤87,∴当x=87时,W有最大值,此时W=-(87-90)2+900=891.11.一家电脑公司推出一款新型电脑,投放市场以来3个月的利润情况如图所示,该图可以近似看作为抛物线的一部分,请结合图象,解答以下问题:(1)求该抛物线对应的二次函数解析式;(2)该公司在经营此款电脑过程中,第几月的利润最大?最大利润是多少?(3)若照此经营下去,请你结合所学的知识,对公司在此款电脑的经营状况(是否亏损?何时亏损?)作预测分析.针对训练解:(1)因图象过原点,则设函数解析式为y=ax2+bx,由图象的点的含义,得解得a=-1,b=14.故所求一次函数的表达式为y=-x2+14x.(2)y=-x2+14x=-(x-7)2+49.即当x=7时,利润最大,y=49(万元)(3)没有利润,即y=-x2+14x=0.解得x1=0(舍去)或x2=14,而这时利润为滑坡状态,所以第15个月,公司亏损.例8如图,梯形ABCD中,AB∥DC,∠ABC=90°,∠A=45°,AB=30,BC=x,其中15<x<30.作DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F处,DF交BC于点G.(1)用含有x的代数式表示BF的长;(2)设四边形DEBG的面积为S,求S与x的函数关系式;(3)当x为何值时,S有最大值?并求出这个最大值.解:(1)由题意,得EF=AE=DE=BC=x,AB=30.∴BF=2x-30.(2)∵∠F=∠A=45°,∠CBF-=∠ABC=90°,∴∠BGF=∠F=45°,BG=BF=2x-30.所以S△DEF-S△GBF=DE2-BF2=x2-(2x-30)2=

x2+60x-450.(3)S=x2+60x-450=(x-20)2+150.∵a=<0,15<20<30,∴当x=20时,S有最大值,最大值为150.12.张大伯准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈.(1)请你求出张大伯矩形羊圈的面积;

(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计?并说明理由.25m针对训练解:(1)由题意,得羊圈的长为25m,宽为(40-25)÷2=7.5(m).

故羊圈的面积为25×7.5=187.5(m2)(2)设羊圈与墙垂直的一边为xm,则与墙相对的一边长为(40-2x)m,羊圈的面积S=x(40-2x)=-2x2+40x=-2(x-10)2+200,(0<x<20).因为0<10<20,所以当x=10时,S有最大值,此时S=200.故张大伯的设计不合理.羊圈与墙垂直的两边长为10m,而与墙相对的一边长为(40-2x)m=20m.

二次函数二次函数的概念二次函数与一元二次方程的联系二次函数的图象与性质课堂小结不共线三点确定二次函数的表达式二次函数的应用播放后答案动态显示第二十三章旋转小结与复习一、旋转的特征1.旋转过程中,图形上______________________按

旋转

.2.任意一对对应点与旋转中心的连线所成的角都是________,对应点到旋转中心的距离都________.3.旋转前后对应线段、对应角分别____,图形的大小、形状_________.每一点都绕旋转中心同一旋转方向同样大小的角度旋转角相等相等不变要点梳理1.中心对称把一个图形绕着某一个点旋转____,如果它能与另一个图形重合,那么就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.180°二、中心对称2.中心对称的特征中心对称的特征:在成中心对称的两个图形中,对应点所连线段都经过

,并且被对称中心________.3.中心对称图形把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.对称中心平分考点一旋转的概念及性质的应用例1

(1)如图a,将三角形AOB绕点O按逆时针方向旋转60°后得到三角形COD,若∠AOB=15°,则∠AOD的度数是()A.15°B.60°C.45°D.75°ABODC图aC

【解析】关键找出旋转角∠BOD=60°;考点讲练(2)如图b,4×4的正方形网格中,三角形MNP绕某点旋转一定的角度,得到三角形M1N1P1,其旋转中心是()A.点AB.点BC.点CD.点DN1M1NMP1DPAB图bCB

【解析】作线段MM1与PP1

的垂直平分线,交点便是旋转中心.1.如图,在4×4的正方形网格中,每个小正方形的边长均为1,将三角形AOB绕点O逆时针旋转90°得到三角形COD,则旋转过程中形成的阴影部分的面积为________.针对训练2.如图,在正方形网格中,三角形ABC的顶点都在格点(小正方形的顶点)上,将三角形ABC绕点A按逆时针方向旋转90°得到三角形AB1C1.请你作出三角形AB1C1.解析:作∠CAC′=90°,且AC=AC′,得到C的对应点C′,由同样的方法得到其余各点的对应点.解:如图所示:

(1)画旋转后的图形,要善于抓住图形特点,作出特殊点的对应点;(2)旋转作图时要明确三个方面:旋转中心、旋转角度及旋转方向(顺时针或逆时针).方法总结考点二旋转变换例2

如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.解析:(1)根据题意,找准旋转中心,旋转方向及旋转角度,补全图形即可;(2)由旋转的性质得∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到△BDC与△EFC全等,利用全等三角形对应角相等即可得证.F解:(1)补全图形,如图所示;(2)由旋转的性质得,DC=FC,∠DCF=90°,∴∠DCE+∠ECF=90°.∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.针对训练3.如图,在等腰Rt△ABC中,点O是AB的中点,AC=4,将一块边长足够大的三角板的直角顶点放在O点处,将三角板绕点O旋转,始终保持三角板的直角边与AC相交,交点为D,另一条直角边与BC相交,交点为E,则等腰直角三角形ABC的边被三角板覆盖部分的两条线段CD与CE长度之和等于

.ABCDEO4

例3

如图,在边长为1的正方形组成的网格中,每个正方形的顶点称为格点.已知△AOB的顶点均在格点上,建立如图所示的平面直角坐标系,点A、B的坐标分别是A(3,2)、B(1,3).xyOAB

(1)将△AOB绕点O逆时针旋转90°后得到△A1OB1,画出旋转后的图形;(2)画出△AOB关于原点O对称的图形△A2OB2,并写出点A2,B2的坐标.xyOABA1B1A2B2解析

(1)因为旋转角90°,故用直角三角板及圆规可快速确定对应点的位置;(2)先根据关于原点对称的点的坐标确定对称顶点的坐标,再依次连结得到所要画的图形.易错提示

作旋转图形不要搞错方向.解:(1)如图所示;(2)如图所示,点A2的坐标为(-3,-2),B2的坐标为(-1,-3).例4

如图,有一张不规则纸片,若连接EB,则纸片被分为矩形FABE和菱形EBCD,请你用无刻度的直尺画一条直线把这张纸片分成面积相等的两部分,并说明理由.ABCFED解:

矩形FABE是中心对称图形,矩形

BCDE也是中心对称图形,所以经过它们中心的直线把图形分成全等的两部分,面积相等.如图直线l既经过矩形FABE的中心,又经过菱形BCDE的中心,所以它把纸片分成面积相等的两部分.l4.如图,从前一个农民有一块平行四边形的土地,地里有一个圆形池塘.财主立下遗嘱:要把这块土地平分给他的两个儿子,中间池塘也平分.财主的两个儿子不知怎么做,你能想个办法吗?解析先找到平行四边形对角线的交点A,过点A、B两点作一条直线可以了.AB针对训练考点三中心对称例5

下列图形中,既是轴对称图形,又是中心对称图形的是().

A

B

C

DD【解析】

图A.图B都是轴对称图形,图C是中心对称图形,图D既是中心对称图形也是轴对称图形.

中心对称图形和轴对称图形的主要区别在于一个是绕一点旋转,另一个是沿一条直线对折.这是易错点,也是辨别它们不同的关键.方法总结5.下列说法不正确的是()A.任何一个具有对称中心的四边形都是平行四边形B.平行四边形既是轴对称图形,又是中心对称图形C.线段、平行四边形、矩形、菱形、正方形都是中心对称图形D.正三角形、矩形、菱形、正方形都是轴对称图形,且对称轴都不止一条.B针对训练例6:如图所示的图案是一个轴对称图形(不考虑颜色),直线m是它的一条对称轴.已知图中圆的半径为r,求你能借助轴对称的方法求出图中阴影部分的面积吗?说说你的做法.m考点四图形变换的简单应用解:以直线m为对称轴,把m左边绿色部分反射到m的右边,那么它们的像恰好填补了右边的白色部分,所以图中的绿色部分面积等于半个圆的面积,也就是.m旋转的概念旋转中心旋转方向旋转角度旋转的三要素基本性质①旋转前后的图形全等②对应点到旋转中心的距离相等旋转图形的旋转③对应点与旋转中心所连线段的夹角等于旋转角旋转作图定找旋连中心对称中心对称定义旋转180°性质对称中心是对称点连线段的中点(即两个对称点与对称中心三点共线中心对称图形性质经过对称中心的直线把原图形面积平分知识网络播放后答案动态显示第24章圆小结与复习·一.与圆有关的概念1.圆:平面内到定点的距离等于定长的所有点组成的图形.2.弦:连结圆上任意两点的线段.3.直径:经过圆心的弦是圆的直径,直径是最长的弦.4.劣弧:小于半圆周的圆弧.5.优弧:大于半圆周的圆弧.要点梳理6.等弧:在同圆或等圆中,能够互相重合的弧.7.圆心角:顶点在圆心,角的两边与圆相交.8.圆周角:顶点在圆上,角的两边与圆相交.[注意](1)确定圆的要素:圆心决定位置,半径决定大小.(2)不在同一条直线上的三个点确定一个圆.·9.外接圆、内接正多边形:将一个圆n(n≥3)等分,依次连接各等分点所得到的多边形叫作这个圆的内接正多边形,这个圆是这个正多边形的外接圆.10.三角形的外接圆

外心:三角形的外接圆的圆心叫做这个这个三角形的外心.[注意](1)三角形的外心是三角形三条边的垂直平分线的交点.(2)一个三角形的外接圆是唯一的.11.三角形的内切圆

内心:三角形的内切圆的圆心叫做这个这个三角形的内心.[注意](1)三角形的内心是三角形三条角平分线的交点.(2)一个三角形的内切圆是唯一的.12.正多边形的相关概念(1)中心:正多变形外接圆和内切圆有公共的圆心,称其为正多边形的中心.(2)半径:外接圆的半径叫做正多边形的半径.(3)边心距:中心到正多边形一边的距离叫做正多边形的边心距.(4)中心角:正多边形每一条边对应所对的外接圆的圆心角都相等,叫做正多边形的中心角.二、与圆有关的位置关系1.点与圆的位置关系判断点与圆的位置关系可由点到圆心的距离d与圆的半径r比较得到.设☉O的半径是r,点P到圆心的距离为d,则有点P在圆内;d<r点P在圆上;d=r点P在圆外.d>r[注意]点与圆的位置关系可以转化为点到圆心的距离与半径之间的关系;反过来,也可以通过这种数量关系判断点与圆的位置关系.2.直线与圆的位置关系设r为圆的半径,d为圆心到直线的距离直线与圆的位置关系

图形

d与r的关系

公共点个数

公共点名称

直线名称2个交点割线1个切点切线0个相离相切相交d>rd=rd<r三、

圆的基本性质1.圆的对称性圆是轴对称图形,它的任意一条_______所在的直线都是它的对称轴.直径2.有关圆心角、弧、弦的性质.(1)在同圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦也相等.(2)在同圆或等圆中,如果两个圆心角、两条弧和两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.圆心角相等弧相等弦相等(2)垂径定理的推论:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.三、

有关定理及其推论1.垂径定理(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的

.[注意]①条件中的“弦”可以是直径;②结论中的“平分弧”指平分弦所对的劣弧、优弧.两条弧2.圆周角定理(1)圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.(3)推论2:90°的圆周角所对的弦是直径.[注意]“同弧”指“在一个圆中的同一段弧”;“等弧”指“在同圆或等圆中相等的弧”;“同弧或等弧”不能改为“同弦或等弦”.(4)推论3:圆的内接四边形的对角互补.(2)推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对弧相等.3.与切线相关的定理(1)判定定理:经过圆的半径的外端且垂直于这条半径的直线是圆的切线.(2)性质定理:圆的切线垂直于经过切点的半径.(3)切线长定理:经过圆外一点所画的圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.四、

圆中的计算问题1.弧长公式半径为R的圆中,n°圆心角所对的弧长l=________.2.扇形面积公式半径为R,圆心角为n°的扇形面积S=____________.或3.弓形面积公式OO弓形的面积=扇形的面积±三角形的面积(3)圆锥的侧面积为

.(4)圆锥的全面积为

.4.圆锥的侧面积(1)圆锥的侧面展开图是一个

.(2)如果圆锥母线长为l,底面圆的半径为r,那么这个扇形的半径为

,扇形的弧长为

.扇形l5.圆内接正多边形的计算(1)正n边形的中心角为(2)正n边形的边长a,半径R,边心距r之间的关系(3)边长a,边心距r的正n边形的面积为其中l为正n边形的周长.考点一圆周角定理例1

在图中,BC是☉O的直径,AD⊥BC,若∠D=36°,则∠BAD的度数是()A.72°B.54°C.45°D.36°ABCDB135°1.如图a,四边形ABCD为☉O的内接正方形,点P为劣弧BC上的任意一点(不与B,C重合),则∠BPC的度数是

.CDBAPO图a针对训练2.如图b,线段AB是直径,点D是☉O上一点,∠CDB=20°,过点C作☉O的切线交AB的延长线于点E,则∠E等于

.OCABED图b50°考点二垂径定理

例2

工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为

mm.8mmAB8CDO解析设圆心为O,连接AO,作出过点O的弓形高CD,垂足为D,可知AO=5mm,OD=3mm,利用勾股定理进行计算,AD=4mm,所以AB=8mm.AOBCEF图a3.如图a,点C是扇形OAB上的AB的任意一点,OA=2,连接AC,BC,过点O作OE⊥AC,OF⊥BC,垂足分别为E,F,连接EF,则EF的长度等于

.(针对训练ABCDPO图bD’P4.如图b,AB是⊙O的直径,且AB=2,C,D是同一半圆上的两点,并且AC与BD的度数分别是96°和36°,动点P是AB上的任意一点,则PC+PD的最小值是

.((例3

如图,

O为正方形对角线上一点,以点O

为圆心,OA长为半径的☉O与BC相切于点M.(1)求证:CD与☉O相切;ABCDOM(1)证明:过点O作ON⊥CD于N.连接OM

∵BC与☉O相切于点M,∴∠OMC=90°,

∵四边形ABCD是正方形,点O在AC上.∴AC是∠BCD的角平分线,∴ON=OM,∴CD与☉O相切.N考点三与圆有关的位置关系ABCDOM(2)解:∵正方形ABCD的边长为1,AC=.设☉O的半径为r,则OC=.又易知△OMC是等腰直角三角形,∴OC=因此有,解得.(2)若正方形ABCD的边长为1,求☉O的半径.方法归纳(1)证切线时添加辅助线的解题方法有两种:①有公共点,连半径,证垂直;②无公共点,作垂直,证半径;有切线时添加辅助线的解题方法是:见切点,连半径,得垂直;(2)设未知数,通常利用勾股定理建立方程.5.

☉O的半径为R,圆心到点A的距离为d,且R、d分别是方程x2-6x+8=0的两根,则点A与☉O的位置关系是()A.点A在☉O内部B.点A在☉O上C.点A在☉O外部D.点A不在☉O上解析:此题需先计算出一元二次方程x2-6x+8=0的两个根,然后再根据R与d的之间的关系判断出点A与

☉O的关系.D针对训练6.(多解题)如图,直线AB,CD相交于点O,∠AOD=30°,半径为1cm的☉P的圆心在射线OA上,且与点O的距离为6cm,如果☉P以1cm/s的速度沿由A向B的方向移动,那么

秒钟后☉P与直线CD相切.4或8解析:

根本题应分为两种情况:(1)☉P在直线AB下面与直线CD相切;(2)☉P在直线AB上面与直线CD相切.ABDCPP2P1E

例4

已知:如图,PA,PB是⊙O的切线,A、B为切点,过上的一点C作⊙O的切线,交PA于D,交PB于E.(1)若∠P=70°,求∠DOE的度数;解:(1)连接OA、OB、OC,∵⊙O分别切PA、PB、DE于点A、B、C,∴OA⊥PA,OB⊥PB,OC⊥DE,AD=CD,BE=CE,∴OD平分∠AOC,OE平分∠BOC.∴∠DOE=∠AOB.∵∠P+∠AOB=180°,∠P=70°,∴∠DOE=55°.(2)∵⊙O分别切PA、PB、DE于A、B、C,∴AD=CD,BE=CE.∴△PDE的周长=PD+PE+DE=PD+AD+BE+PE=2PA=8(cm)(2)若PA=4cm,求△PDE的周长.例5如图,四边形OABC为菱形,点B、C在以点O为圆心的圆上,

OA=1,∠AOC=120°,∠1=∠2,则扇形OEF的面积?解:∵四边形OABC为菱形∴OC=OA=1

∵∠AOC=120°,∠1=∠2∴∠FOE=120°

又∵点C在以点O为圆心的圆上

考点四圆中的计算问题7.(1)一条弧所对的圆心角为135°,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为

.(2)若一个正六边形的周长为24,则该正六边形的面积为______.40cm针对训练8.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于_______.例6

如图所示,在正方形ABCD内有一条折线段,其中AE⊥EF,EF⊥FC,已知AE=6,EF=8,FC=10,求图中阴影部分的面积.解:将线段FC平移到直线AE上,此时点F与点E重合,点C到达点C'的位置.连接AC,如图所示.根据平移的方法可知,四边形EFCC'是矩形.∴AC'=AE+EC'=AE+FC=16,CC'=EF=8.在Rt△AC'C中,得∴正方形ABCD外接圆的半径为∴正方形ABCD的边长为

当图中出现圆的直径时,一般方法是作出直径所对的圆周角,从而利用“直径所对的圆周角等于”构造出直角三角形,为进一步利用勾股定理或锐角三角函数提供了条件.方法总结9.如图,正六边形ABCDEF内接于半径为5的⊙O,四边形EFGH是正方形.⑴求正方形EFGH的面积;解:⑴∵正六边形的边长与其半径相等,∴EF=OF=5.∵四边形EFGH是正方形,

∴FG=EF=5,∴正方形EFGH的面积是25.针对训练⑵∵正六边形的边长与其半径相等,∴∠OFE=600.∴正方形的内角是900,∴∠OFG=∠OFE+∠EFG=600+900=1500.由⑴得OF=FG,∴∠OGF=(1800-∠OFG)

=(1800-1500)=150.⑵连接OF、OG,求∠OGF的度数.考点五与圆有关的作图·abcda例7如何解决“破镜重圆”的问题:O·例8如何作圆内接正五边形怎么作?·OE72°BADC(1)用量角器作72°的中心角,得圆的五等分点;(2)依次连接各等分点,得圆的内接正五边形.圆圆的性质与圆有关的位置关系弧长与扇形面积的计算圆的对称性圆是中心对称图形垂径定理四边形的内接圆、三角形的外接圆直线与圆的位置的关系切线长定理课堂小结圆的概念圆心角、圆周角、弧与弦之间的关系圆是轴对称图形,任意一条直径所在直线都是它的对称轴切线三角形的内切圆正多边形与圆作图播放后答案动态显示小结与复习第25章概率初步一、事件的分类及其概念要点梳理事件确定事件随机事件必然事件不可能事件

1.在一定条件下必然发生的事件,叫做必然事件;

2.在一定条件下不可能发生的事件,叫做不可能事件;

3.在一定条件下可能发生也可能不发生的事件,叫做随机事件.

1.概率:

一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记作P(A).二、概率的概念01事件发生的可能性越来越大事件发生的可能性越来越小不可能事件必然事件概率的值2.三、随机事件的概率的求法1.①当实验的所有结果不是有限个,或各种可能结果发生的可能性不相等时,我们用大量重复试验中随机事件发生的稳定频率来估计概率.②频率与概率的关系:两者都能定量地反映随机事件可能性的大小,但频率具有随机性,概率是自身固有的性质,不具有随机性.2.概率的计算公式:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,那么出现每一种结果的概率都是.

如果事件A包括其中的m种可能的结果,那么事件A发生的概率P(A)=++…+n1n1n1m个=nm

当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.一个因素所包含的可能情况另一个因素所包含的可能情况两个因素所组合的所有可能情况,即n

在所有可能情况n中,再找到满足条件的事件的个数m,最后代入公式计算.列表法中表格构造特点:

当一次试验中涉及3个因素或更多的因素时,怎么办?四、列表法

当一次试验中涉及2个因素或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用“树状图”.树形图的画法:一个试验第一个因数第二个第三个

如一个试验中涉及2个或3个因数,第一个因数中有2种可能情况;第二个因数中有3种可能的情况;第三个因数中有2种可能的情况.AB123123ababababababn=2×3×2=12五、树状图法考点一事件的判断和概率的意义考点讲练例1

下列事件是随机事件的是()A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心D1.“闭上眼睛从布袋中随机地摸出1个球,恰是红球的概率是”的意思是()A.布袋中有2个红球和5个其他颜色的球B.如果摸球次数很多,那么平均每摸7次,就有2次摸中红球C.摸7次,就有2次摸中红球D.摸7次,就有5次摸不中红球B针对训练2.下列事件中是必然事件的是()A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹的自行车轮胎被钉子扎坏C.小红期末考试数学成绩一定得满分D.将油滴入水中,油会浮在水面上D考点二用列举法求概

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论