版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省大连高新园区四校联考2023-2024学年九年级数学第一学期期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知M(a,b)是平面直角坐标系xOy中的点,其中a是从l,2,3,4三个数中任取的一个数,b是从l,2,3,4,5五个数中任取的一个数.定义“点M(a,b)在直线x+y=n上”为事件Qn(2≤n≤9,n为整数),则当Qn的概率最大时,n的所有可能的值为()A.5 B.4或5 C.5或6 D.6或72.已知点A(-2,m),B(2,m),C(3,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣ C.y=x2 D.y=﹣x23.在Rt△ABC中,∠C=90°,tanA=,则sinA的值为()A. B. C. D.4.为了解圭峰会城九年级女生身高情况,随机抽取了圭峰会城九年级100名女生,她们的身高x(cm)统计如下:组别(cm)x<150150≤x<155155≤x<160160≤x<165x≥165频数22352185根据以上结果,随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是()A.0.25 B.0.52 C.0.70 D.0.755.某厂今年3月的产值为50万元,5月份上升到72万元,这两个月平均每月增长的百分率是多少?若设平均每月增长的百分率为x,则列出的方程正确的是()A.50(1+x)=72 B.50(1+x)+50(1+x)2=72C.50(1+x)×2=72 D.50(1+x)2=726.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3 B.c<﹣2 C.c< D.c<17.口袋中有2个红球和1个黑球,每次摸到后放回,两次都摸到红球的概率为()A. B. C. D.8.不等式的解集是()A. B. C. D.9.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x,则下列方程中,正确的是()A.600(1+x)=950 B.600(1+2x)=950C.600(1+x)2=950 D.950(1﹣x)2=60010.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A.4πcm B.3πcm C.2πcm D.πcm二、填空题(每小题3分,共24分)11.如图,直线l1∥l2,直线l3与l1、l2分别交于点A、B.若∠1=69°,则∠2的度数为_____.12.二次函数的图象如图所示,若点,是图象上的两点,则____(填“>”、“<”、“=”).13.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是_____.14.如图,一抛物线与轴相交于,两点,其顶点在折线段上移动,已知点,,的坐标分别为,,,若点横坐标的最小值为0,则点横坐标的最大值为______.15.小芳的房间有一面积为3
m2的玻璃窗,她站在室内离窗子4
m的地方向外看,她能看到窗前面一幢楼房的面积有____m2(楼之间的距离为20
m).16.若点,是抛物线上的两个点,则此抛物线的对称轴是___.17.方程的解是________.18.我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是1.其中正确结论的个数是______.三、解答题(共66分)19.(10分)如图,在中,D、E分别为BC、AC上的点.若,AB=8cm,求DE的长.20.(6分)如图,已知点C(0,3),抛物线的顶点为A(2,0),与y轴交于点B(0,1),F在抛物线的对称轴上,且纵坐标为1.点P是抛物线上的一个动点,过点P作PM⊥x轴于点M,交直线CF于点H,设点P的横坐标为m.(1)求抛物线的解析式;(2)若点P在直线CF下方的抛物线上,用含m的代数式表示线段PH的长,并求出线段PH的最大值及此时点P的坐标;(3)当PF﹣PM=1时,若将“使△PCF面积为2”的点P记作“巧点”,则存在多个“巧点”,且使△PCF的周长最小的点P也是一个“巧点”,请直接写出所有“巧点”的个数,并求出△PCF的周长最小时“巧点”的坐标.21.(6分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?22.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.23.(8分)如图,已知一个,其中,点分别是边上的点,连结,且.(1)求证:;(2)若求的面积.24.(8分)如图,在正方形ABCD中,,点E为对角线AC上一动点(点E不与点A、C重合),连接DE,过点E作,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求AC的长;(2)求证矩形DEFG是正方形;(3)探究:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.25.(10分)粤东农批﹒2019球王故里五华马拉松赛于12月1日在广东五华举行,组委会为了做好运动员的保障工作,沿途设置了4个补给站,分别是:A(粤东农批)、B(奥体中心)、C(球王故里)和D(滨江中路),志愿者小明和小红都计划各自在这4个补给站中任意选择一个进行补给服务,每个补给站被选择的可能性相同.(1)小明选择补给站C(球王故里)的概率是多少?(2)用树状图或列表的方法,求小明和小红恰好选择同一个补给站的概率.26.(10分)小明同学解一元二次方程x2﹣6x﹣1=0的过程如图所示.解:x2﹣6x=1…①x2﹣6x+9=1…②(x﹣3)2=1…③x﹣3=±1…④x1=4,x2=2…⑤(1)小明解方程的方法是.(A)直接开平方法(B)因式分解法(C)配方法(D)公式法他的求解过程从第步开始出现错误.(2)解这个方程.
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:列树状图为:∵a是从l,2,3,4四个数中任取的一个数,b是从l,2,3,4,5五个数中任取的一个数.又∵点M(a,b)在直线x+y=n上,2≤n≤9,n为整数,∴n=5或6的概率是,n=4的概率是,∴当Qn的概率最大时是n=5或6的概率是最大.故选C.考点:1、列表法与树状图法;2、一次函数图象上点的坐标特征2、D【分析】可以采用排除法得出答案,由点A(-2,m),B(2,m)关于y轴对称,于是排除选项A、B;再根据B(2,m),C(3,m﹣n)(n>0)的特点和二次函数的性质,可知抛物线在对称轴的右侧呈下降趋势,所以抛物线的开口向下,即a<0.【详解】解:∵A(-2,m),B(2,m)关于y轴对称,且在同一个函数的图像上,
而,的图象关于原点对称,∴选项A、B错误,只能选C、D,,
;
∵,在同一个函数的图像上,而y=x2在y轴右侧呈上升趋势,∴选项C错误,而D选项符合题意.故选:D.【点睛】本题考查正比例函数、反比例函数、二次函数的图象和性质,熟悉各个函数的图象和性质是解题的基础,发现点的坐标关系是解题的关键.3、B【分析】由题意直接根据三角函数的定义进行分析即可求解.【详解】解:∵在Rt△ABC中,∠C=90°,tanA=,∴可以假设BC=k,AC=2k,∴AB=k,∴sinA==.故选:B.【点睛】本题考查同角三角函数的计算,解题本题的关键是明确sinA等于对边与斜边的比.4、D【分析】直接利用不低于155cm的频数除以总数得出答案.【详解】∵身高不低于155cm的有52+18+5=1(人),∴随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是:=0.1.故选:D.【点睛】本题考查了概率公式,正确应用概率公式是解题关键.5、D【分析】可先表示出4月份的产量,那么4月份的产量×(1+增长率)=5月份的产量,把相应数值代入即可求解.【详解】4月份产值为:50(1+x)5月份产值为:50(1+x)(1+x)=50(1+x)2=72故选D.点睛:考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6、B【分析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,由此可知方程x2+x+c=0有两个不相等的实数根,即△=1-4c>0,再由题意可得函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,由此可得关于c的不等式组,解不等式组即可求得答案.【详解】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以△=1-4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则,解得c<﹣2,故选B.【点睛】本题考查了二次函数与一元二次方程的关系,正确理解题中的定义,熟练掌握二次函数与一元二次方程的关系是解题的关键.7、D【分析】根据题意画出树形图即可求出两次都摸到红球的概率,进而得出选项.【详解】解:设红球为1,黑球为2,画树形图得:由树形图可知:两次都摸到红球的概率为.故选:D.【点睛】本题考查用列表法与树状图法求随机事件的概率,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.8、C【解析】移项、合并同类项,系数化为1即可求解.【详解】解:,故选:C.【点睛】考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.9、C【分析】设快递量平均每年增长率为,根据我国2018年及2020年的快递业务量,即可得出关于的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=1.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10、C【分析】点D所转过的路径长是一段弧,是一段圆心角为180°,半径为OD的弧,故根据弧长公式计算即可.【详解】解:BD=4,
∴OD=2
∴点D所转过的路径长==2π.
故选:C.【点睛】本题主要考查了弧长公式:.二、填空题(每小题3分,共24分)11、111°【分析】根据平行线的性质求出∠3=∠1=69°,即可求出答案.【详解】解:∵直线l1∥l2,∠1=69°,∴∠3=∠1=69°,∴∠2=180°﹣∠3=111°,故答案为111°.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,同位角相等.12、>【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线上,∴>.故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A和点B都在对称轴的右侧.13、(0,3)【分析】要求抛物线与y轴的交点,即令x=0,解方程即可.【详解】解:令x=0,则y=3,即抛物线y=2x2-5x+3与y轴的交点坐标是(0,3).故答案为(0,3).【点睛】本题考查了抛物线与y轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与y轴的交点坐标,令x=0,即可求得交点纵坐标.14、7【分析】当点横坐标的最小值为0时,抛物线顶点在C点,据此可求出抛物线的a值,再根据点横坐标的最大值时,顶点在E点,求出此时的抛物线即可求解.【详解】当点横坐标的最小值为0时,抛物线顶点在C点,设该抛物线的解析式为:y=a(x+2)2+8,代入点B(0,0)得:0=a(x+2)2+8,则a=−2,即:B点横坐标取最小值时,抛物线的解析式为:y=-2(x+2)2+8.当A点横坐标取最大值时,抛物线顶点应取E,则此时抛物线的解析式:y=-2(x−8)2+2,令y=0,解得x1=7,x2=9∴点A的横坐标的最大值为7.故答案为7.【点睛】此题主要考查二次函数的平移问题,解题的关键是熟知待定系数法求解解析式.15、108【解析】考点:平行投影;相似三角形的应用.分析:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.解答:解:根据题意:她能看到窗前面一幢楼房的图形与玻璃窗的外形应该相似,且相似比为=6,故面积的比为36;故她能看到窗前面一幢楼房的面积有36×3=108m1.点评:本题考查了平行投影、视点、视线、位似变换、相似三角形对应高的比等于相似比等知识点.注意平行投影特点:在同一时刻,不同物体的物高和影长成比例16、x=3【分析】根据抛物线的对称性即可确定抛物线对称轴.【详解】解:点,是抛物线上的两个点,且纵坐标相等.根据抛物线的对称性知道抛物线对称轴是直线.故答案为:.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.17、.【分析】方程去分母转化为整式方程,求出整式方程的解得到的值,经检验得到分式方程的解.【详解】去分母得:,解得:,经检验是的根,所以,原方程的解是:.故答案是为:【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18、1【解析】由,和坐标都满足函数,∴①是正确的;从图象可以看出图象具有对称性,对称轴可用对称轴公式求得是直线,②也是正确的;根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;从图象上看,当或,函数值要大于当时的,因此⑤时不正确的;逐个判断之后,可得出答案.【详解】解:①∵,和坐标都满足函数,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线,因此②也是正确的;③根据函数的图象和性质,发现当或时,函数值随值的增大而增大,因此③也是正确的;④函数图象的最低点就是与轴的两个交点,根据,求出相应的的值为或,因此④也是正确的;⑤从图象上看,当或,函数值要大于当时的,因此⑤是不正确的;故答案是:1【点睛】理解“鹊桥”函数的意义,掌握“鹊桥”函数与与二次函数之间的关系;两个函数性质之间的联系和区别是解决问题的关键;二次函数与轴的交点、对称性、对称轴及最值的求法以及增减性应熟练掌握.三、解答题(共66分)19、【分析】根据两边成比例且夹角相等证△CDE∽△CAB,由相似性质得对应边成比例求解.【详解】解:在△CDE和△CAB中,∵,∠DCE=∠ACB,∴△CDE∽△CAB,∴,∴,∴DE=.【点睛】本题考查相似三角形的判定及性质,正确找出相似条件是解答此题的关键.20、(1)y=(x﹣2)2,即y=x2﹣x+1;(2)m=0时,PH的值最大最大值为2,P(0,2);(3)△PCF的巧点有3个,△PCF的周长最小时,“巧点”的坐标为(0,1).【解析】(1)设抛物线的解析式为y=a(x﹣2)2,将点B的坐标代入求得a的值即可;(2)求出直线CF的解析式,求出点P、H的坐标,构建二次函数即可解决问题;(3)据三角形的面积公式求得点P到CF的距离,过点C作CG⊥CF,取CG=.则点G的坐标为(﹣1,2)或(1,4),过点G作GH∥FC,设GH的解析式为y=﹣x+b,将点G的坐标代入求得直线GH的解析式,将直线GH的解析式与抛物线的解析式,联立可得到点P的坐标,当PC+PF最小时,△PCF的周长最小,由PF﹣PM=1可得到PC+PF=PC+PM+1,故此当C、P、M在一条直线上时,△PCF的周长最小,然后可求得此时点P的坐标;【详解】解:(1)设抛物线的解析式为y=a(x﹣2)2,将点B的坐标代入得:4a=1,解得a=,∴抛物线的解析式为y=(x﹣2)2,即y=x2﹣x+1.(2)设CF的解析式为y=kx+3,将点F的坐标F(2,1)代入得:2k+3=1,解得k=﹣1,∴直线CF的解析式为y=﹣x+3,由题意P(m,m2﹣m+1),H(m,﹣m+3),∴PH=﹣m2+2,∴m=0时,PH的值最大最大值为2,此时P(0,2).(3)由两点间的距离公式可知:CF=2.设△PCF中,边CF的上的高线长为x.则×2x=2,解得x=.过点C作CG⊥CF,取CG=.则点G的坐标为(﹣1,2).过点G作GH∥FC,设GH的解析式为y=﹣x+b,将点G的坐标代入得:1+b=2,解得b=1,∴直线GH的解析式为y=﹣x+1,与y=(x﹣2)2联立解得:,所以△PCF的一个巧点的坐标为(0,1).显然,直线GH在CF的另一侧时,直线GH与抛物线有两个交点.∵FC为定点,∴CF的长度不变,∴当PC+PF最小时,△PCF的周长最小.∵PF﹣PM=1,∴PC+PF=PC+PM+1,∴当C、P、M在一条直线上时,△PCF的周长最小.∴此时P(0,1).综上所述,△PCF的巧点有3个,△PCF的周长最小时,“巧点”的坐标为(0,1).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、两点间的距离公式、垂线段最短等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会构建二次函数解决最值问题,学会构建一次函数,利用方程组确定交点坐标,属于中考压轴题.21、(1)1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.【分析】(1)由销售单价每涨1元,就会少售出10件玩具得销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.【详解】解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.故答案为:1000﹣x,﹣10x2+1300x﹣1.(2)﹣10x2+1300x﹣1=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)根据题意得,解得:44≤x≤46.w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65,∴当44≤x≤46时,y随x增大而增大.∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.22、证明见解析;【解析】试题分析:由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.考点:全等三角形的判定与性质.23、(1)见解析;(2)【分析】(1)根据AA即可证明;(2)根据解直角三角形的方法求出AF,E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管线改造合同范本
- 海淀区农村集体经济合同管理办法
- 合同裁判共同规则
- 角膜炎的治疗与护理
- 2024-2025学年新教材高中地理第五章自然环境的整体性与差异性单元评价含解析湘教版选择性必修一
- 2024房产抵押贷款的合同协议书
- 英文调查报告(共16篇)
- 精准营销策略15篇
- 无人机技术的应用前景
- 2024店面租赁合同模板「标准版」
- 弯管力矩计算公式
- 《Excel数据分析》教案
- 浅谈让学生信服的有效途径
- 汽车低压电线束技术条件
- 水稻常见病虫害ppt
- 学生会考核表(共3页)
- 小蛋壳历险记.ppt
- 六年级家长会家长代表演讲稿-PPT
- 学校校报校刊卷首语(创刊词)
- 《电容的连接》ppt课件
- 采集运维专业问答题(修订)20140627
评论
0/150
提交评论