版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市2023-2024学年数学九年级第一学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,若绕点按逆时针方向旋转后能与重合,则().A. B. C. D.2.如图,在△ABC中,DE∥BC,若=,则的值为()A. B. C. D.3.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A. B. C. D.4.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A. B. C. D.5.如图,小颖身高为160cm,在阳光下影长AB=240cm,当她走到距离墙角(点D)150cm处时,她的部分影子投射到墙上,则投射在墙上的影子DE的长度为()A.50 B.60 C.70 D.806.已知关于x的一元二次方程有两个相等的实数根,则a的值是()A.4 B.﹣4 C.1 D.﹣17.如图,菱形中,过顶点作交对角线于点,已知,则的大小为()A. B. C. D.8.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.29.下列方程中,没有实数根的方程是()A.(x-1)2=2C.3x210.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A. B. C. D.11.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A. B. C. D.12.已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,已知直线y=mx与双曲线y=一个交点坐标为(3,4),则它们的另一个交点坐标是_____.14.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是______________.15.在一个不透明的箱子中,共装有白球、红球、黄球共60个,这些球的形状、大小、质地等完全相同.小华通过多次试验后发现,从盒子中摸出红球的频率是15%,摸出白球的频率是45%,那么可以估计盒子中黄球的个数是_____.16.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则cos∠AOB的值等于___________.17.如图,AD与BC相交于点O,如果,那么当的值是_____时,AB∥CD.18.在平面直角坐标系中,点P的坐标为(﹣4,0),半径为1的动圆⊙P沿x轴正方向运动,若运动后⊙P与y轴相切,则点P的运动距离为______.
三、解答题(共78分)19.(8分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB绕原点顺时针旋转后得到的△,并写出点的坐标;(2)在(1)的条件下,求线段在旋转过程中扫过的扇形的面积.20.(8分)元旦游园活动中,小文,小美,小红三位同学正在搬各自的椅子准备进行“抢凳子”游戏,看见李老师来了,小文立即邀请李老师参加,游戏规则如下:将三位同学的椅子背靠背放在教室中央,四人围着椅子绕圈行走,在行走过程中裁判员随机喊停,听到“停”后四人迅速抢坐在一张椅子上,没有抢坐到椅子的人淘汰,不能进入下一轮游戏.(1)下列事件是必然事件的是.A.李老师被淘汰B.小文抢坐到自己带来的椅子C.小红抢坐到小亮带来的椅子D.有两位同学可以进入下一轮游戏(2)如果李老师没有抢坐到任何一张椅子,三位同学都抢坐到了椅子但都没有抢坐到自己带来的椅子(记为事件),求出事件的概率,请用树状图法或列表法加以说明.21.(8分)小明想要测量一棵树DE的高度,他在A处测得树顶端E的仰角为30°,他走下台阶到达C处,测得树的顶端E的仰角是60°.已知A点离地面的高度AB=2米,∠BCA=30°,且B,C,D三点在同一直线上.求树DE的高度;22.(10分)李老师将1个黑球和若干个白球放入一个不透明的口袋中并搅匀,让学生进行摸球试验,每次摸出一个球(放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸到黑球的次数m233160130203251摸到黑球的频率0.230.210.30_______________(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个黑球的概率是______.(结果都保留小数点后两位)(2)估算袋中白球的个数为________.(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算出两次都摸出白球的概率.23.(10分)如图,抛物线与轴相交于两点,点在点的右侧,与轴相交于点.求点的坐标;在抛物线的对称轴上有一点,使的值最小,求点的坐标;点为轴上一动点,在抛物线上是否存在一点,使以四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.24.(10分)已知,如图1,在中,,,,若为的中点,交与点.(1)求的长.(2)如图2,点为射线上一动点,连接,线段绕点顺时针旋转交直线与点.①若时,求的长:②如图3,连接交直线与点,当为等腰三角形时,求的长.25.(12分)如图,有一座圆弧形拱桥,它的跨度为,拱高为,当洪水泛滥到跨度只有时,就要采取紧急措施,若某次洪水中,拱顶离水面只有,即时,试通过计算说明是否需要采取紧急措施.26.如图,抛物线的顶点为,且抛物线与直线相交于两点,且点在轴上,点的坐标为,连接.(1),,(直接写出结果);(2)当时,则的取值范围为(直接写出结果);(3)在直线下方的抛物线上是否存在一点,使得的面积最大?若存在,求出的最大面积及点坐标.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据旋转的性质知,,然后利用三角形内角和定理进行求解.【详解】∵绕点按逆时针方向旋转后与重合,∴,,∴,故选D.【点睛】本题考查了旋转的性质,三角形内角和定理,熟知旋转角的定义与旋转后对应边相等是解题的关键.2、A【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵=,∴,∵DE∥BC,∴,故选:A.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.3、D【解析】试题分析:列表如下
黑
白1
白2
黑
(黑,黑)
(白1,黑)
(白2,黑)
白1
(黑,白1)
(白1,白1)
(白2,白1)
白2
(黑,白2)
(白1,白2)
(白2,白2)
由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.考点:用列表法求概率.4、A【分析】抛物线平移不改变a的值.【详解】原抛物线的顶点为(0,0),向左平移2个单位,再向下平移1个单位,那么新抛物线的顶点为(﹣2,﹣1),可设新抛物线的解析式为:y=(x﹣h)2+k,代入得:y=(x+2)2﹣1=x2+4x+1.故选A.5、B【分析】过E作EF⊥CG于F,利用相似三角形列出比例式求出投射在墙上的影子DE长度即可.【详解】过E作EF⊥CG于F,设投射在墙上的影子DE长度为x,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC−x),则240:150=160:(160−x),解得:x=60.故选B.【点睛】本题考查相似三角形的判定与性质,解题突破口是过E作EF⊥CG于F.6、D【详解】解:根据一元二次方程根的判别式得,△,解得a=﹣1.故选D.7、D【分析】先说明ABD=∠ADC=∠CBD,然后再利用三角形内角和180°求出即可∠CBD度数,最后再用直角三角形的内角和定理解答即可.【详解】解:∵菱形ABCD∴AB=AD∴∠ABD=∠ADC∴∠ABD=∠CBD又∵∴∠CBD=∠BDC=∠ABD=∠ADB=(180°-134°)=23°∴=90°-23°=67°故答案为D.【点睛】本题主要考查了菱形的性质,解题的关键是掌握菱形的对角线平分每一组对角和三角形内角和定理.8、C【解析】根据根与系数的关系可得出两根之和为4,从而得出另一个根.【详解】设方程的另一个根为m,则1+m=4,∴m=3,故选C.【点睛】本题考查了一元二次方程根与系数的关系.解答关于x的一元二次方程x2-4x+c=0的另一个根时,也可以直接利用根与系数的关系x1+x2=-解答.9、D【解析】先把方程化为一般式,再分别计算各方程的判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:A、方程化为一般形式为:x2-2x-1=0,△=(−2)2−4×1×(−1)=8>0,方程有两个不相等的实数根,所以B、方程化为一般形式为:2x2-x-3=0,△=(−1)2−4×2×(−3)=25>0,方程有两个不相等的实数根,所以C、△=(−2)2−4×3×(−1)=16>0,方程有两个不相等的实数根,所以C选项错误;D、△=22−4×1×4=−12<0,方程没有实数根,所以D选项正确.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10、C【解析】试题分析:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线>0,∴b>0,∵与y轴的正半轴相交,∴c>0,∴的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合.故选C.考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.11、B【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是.故选:B.【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.12、D【解析】先写出三角形底边a上的高h与底边a之间的函数关系,再根据反比例函数的图象特点得出.【详解】解:已知三角形的面积s一定,
则它底边a上的高h与底边a之间的函数关系为S=ah,即;
该函数是反比例函数,且2s>0,h>0;
故其图象只在第一象限.
故选:D.【点睛】本题考查反比例函数的图象特点:反比例函数的图象是双曲线,与坐标轴无交点,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.二、填空题(每题4分,共24分)13、(﹣3,﹣4)【分析】根据反比例函数与正比例函数的中心对称性解答即可.【详解】解:因为直线y=mx过原点,双曲线y=的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(3,4),则另一个交点的坐标为(﹣3,﹣4).故答案是:(﹣3,﹣4).【点睛】本题考查了反比例函数和正比例函数的性质,通过数形结合和中心对称的定义很容易解决.反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.14、【分析】直接利用概率公式求解.【详解】解:从袋子中随机取出1个球是红球的概率,故答案为:【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,知道白球、黄球的频率后,可以得出黄球概率,即可得出黄球的个数.【详解】解:∵从盒子中摸出红球的频率是15%,摸出白球的频率是45%,∴得到黄球的概率为:1﹣15%﹣45%=40%,则口袋黄小球有:60×40%=1个.故答案为:1.【点睛】本题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率,解决本题的关键是要熟练掌握频率,概率的关系.16、.【解析】试题分析:根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.试题解析:连接AB,由画图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.考点:1.特殊角的三角函数值;2.等边三角形的判定与性质.17、【分析】如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,据此可得结论.【详解】,当时,,.故答案为.【点睛】本题主要考查了平行线分线段成比例定理,解题时注意:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.18、3或1【解析】利用切线的性质得到点P到y轴的距离为1,此时P点坐标为(-1,0)或(1,0),然后分别计算点(-1,0)和(1,0)到(-4,0)的距离即可.【详解】若运动后⊙P与y轴相切,则点P到y轴的距离为1,此时P点坐标为(-1,0)或(1,0),而-1-(-4)=3,1-(-4)=1,所以点P的运动距离为3或1.故答案为3或1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.三、解答题(共78分)19、(1)图见解析,点A1坐标是(1,-4);(2)【分析】(1)据网格结构找出点A、B绕点O按照顺时针旋转90°后的对应点A1、B1的位置,然后顺次O、A1、B1连接即可,再根据平面直角坐标系写出A1点的坐标;(2)利用扇形的面积公式求解即可,利用网格结构可得出.【详解】(1)点A1坐标是(1,-4)(2)根据题意可得出:∴线段在旋转过程中扫过的扇形的面积为:.【点睛】本题考查的知识点是旋转变换以及扇形的面积公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.20、(1)D;(2)图见解析,【分析】(1)根据随机事件、必然事件和不可能事件的定义求解可得;(2)根据题意画出树状图列出所有等可能结果,再根据概率公式求解可得.【详解】解:(1)、王老师被淘汰是随机事件;、小明抢坐到自己带来的椅子是随机事件;、小红抢坐到小亮带来的椅子是随机事件;、共有3张椅子,四人中只有1位老师,所以一定有2位同学能进入下一轮游戏;故是必然事件.故选:;(2)解:设小文,小美,小红三位同学带来的椅子依次排列为a、b、c,画树状图如下由树状图可知,所有等可能结果共有6种,其中第4种、第5种结果符合题意,∴P(A)=.【点睛】此题考查了概率和用树状图法与列表法求概率.树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率所求情况数与总情况数之比.21、树DE的高度为6米.【分析】先根据∠ACB=30°求出AC=1米,再求出∠EAC=60°,解Rt△ACE得EC的长,依据∠DCE=60°,解Rt△CDE得的长.【详解】∵∠B=90°,∠ACB=30°,AB=2,∴AC=2AB=1.又∵∠DCE=60°,∴∠ACE=90°.∵AF∥BD,∴∠CAF=∠ACB=30°,∴∠EAC=60°.在Rt△ACE中,∵,∴,在Rt△DCE中∵∠DCE=60°,,∴.答:树DE的高度为6米.【点睛】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.22、表格内数据:0.26,0.25,0.25(1)0.25;(2)1;(1).【分析】(1)直接利用频数÷总数=频率求出答案;(2)设袋子中白球有x个,利用表格中数据估算出得到黑球的频率列出关于x的分式方程,【详解】(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近0.25,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,=0.25,x=1.答:估计袋中有1个白球.(1)由题意画树状图得:由树状图可知,所有可能出现的结果共有16种,这些结果出现的可能性相等,其中两次都摸出白球的有9种情况.所以P(两次都摸出白球)=.【点睛】本题主要考查了模拟实验以及频率求法和树状图法与列表法求概率,解决本题的关键是要熟练掌握概率计算方法.23、(1),;(2);(3)点的坐标为,或.【分析】(1)把y=0代入函数解析式,解方程可求得A、B两点的坐标;把x=0代入函数解析式可求得C点的坐标.
(2)连接BC,交对称轴于P,P即为使PB+PC的值最小,设直线BC的解析式,把B、C的坐标代入即可求得系数,进而求得解析式,令x=2时,即可求得P的坐标;
(3)分两种情况:
①当存在的点N在x轴的上方时,根据对称性可得点N的坐标为(4,);
②当存在的点N在x轴下方时,作辅助线,构建三角形全等,证明得,即N点的纵坐标为-,列方程可得N的坐标.【详解】(1)当时,当时,,化简,得.解得.连接,交对称轴于点,连接.点和点关于抛物线的对称轴对称,.要使的值最小,则应使的值最小,所以与对称轴的交点使得的值最小.设的解析式为.将代入,可得,解得,抛物线的对称轴为直线当时,,①当在轴上方,此时,且.则四边形是平行四边形.②当在轴下方;作,交于点.如果四边形是平行四边形...又,.当时,,综上所述,点的坐标为,或.【点睛】本题考查了待定系数法求二次函数解析式.轴对称的性质、平行四边形的判定、三角形全等的性质和判定等知识,难度适中,第2问解题的关键是熟练掌握平行四边形的判定,采用分类讨论的思想和数形结合的思想解决问题.24、(1);(2)①,;②,.【分析】(1)先利用相似三角形性质求得∽,并利用相似比即可求的长;(2)①由题意分点在线段上,点在射线上,利用相似三角形性质进行分析求值;②利用三角函数以及等腰三角形性质综合进行分析讨论.【详解】解:(1)∵,,∴∽∴∵,∴∴(2)①()点在线段上∵,∴为的中点∵为的中点∴∵,∴∴是的中位线∴()点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桥梁抗震支架施工方案
- 高档住宅地板供应及维护方案
- 养老院护理应急管理制度实施细则
- 2024年修订版建材交易条款
- 2024年居民区虫害防治协议
- 幼儿园食品安全与疫情防控方案
- 学考单词测试学习通超星期末考试答案章节答案2024年
- 市场调查与统计分析一学习通超星期末考试答案章节答案2024年
- 2024年企业木材供应链合同
- 智能化钢便桥施工方案探索
- 氢氧化钠安全技术说明书(共2页)
- 投标优惠条件承诺书
- 生石灰(氧化钙)MSDS
- 精通版五年级英语上册Unit4单元测试卷(含听力材料及答案)
- 顾客皮肤分析护理档案表
- 中俄跨界水体水质联合监测方案
- 秋季宜宾东辰国际学校小升初超越杯数学试题(含参考答案)
- 老挝的建筑文化
- 临床营养评价
- 氮气二氧化碳辅助吞吐技术研究与应用
- 新产品开发管理程序(GPDP)-上汽变速器制造标准
评论
0/150
提交评论