辽宁省瓦房店市2023-2024学年高考适应性考试数学试卷含解析_第1页
辽宁省瓦房店市2023-2024学年高考适应性考试数学试卷含解析_第2页
辽宁省瓦房店市2023-2024学年高考适应性考试数学试卷含解析_第3页
辽宁省瓦房店市2023-2024学年高考适应性考试数学试卷含解析_第4页
辽宁省瓦房店市2023-2024学年高考适应性考试数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省瓦房店市2023-2024学年高考适应性考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若关于的方程有且只有一个实数根,则实数的取值范围是()A. B.C. D.2.在直角梯形中,,,,,点为上一点,且,当的值最大时,()A. B.2 C. D.3.已知函数的图像的一条对称轴为直线,且,则的最小值为()A. B.0 C. D.4.已知函数,则函数的图象大致为()A. B.C. D.5.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是()A. B. C. D.6.五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为()A. B. C. D.7.设,,分别是中,,所对边的边长,则直线与的位置关系是()A.平行 B.重合C.垂直 D.相交但不垂直8.宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为()A. B. C. D.9.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则直径在内的概率为()附:若,则,.A.0.6826 B.0.8413 C.0.8185 D.0.954410.设复数,则=()A.1 B. C. D.11.已知,,由程序框图输出的为()A.1 B.0 C. D.12.如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数恰好有3个不同的零点,则实数的取值范围为____14.平面向量,,(R),且与的夹角等于与的夹角,则.15.直线是圆:与圆:的公切线,并且分别与轴正半轴,轴正半轴相交于,两点,则的面积为_________16.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现已日益成为老百姓了解国家动态,紧跟时代脉搏的热门app.该款软件主要设有“阅读文章”和“视听学习”两个学习板块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题板块.某人在学习过程中,将六大板块依次各完成一次,则“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有________种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.18.(12分)在四边形中,,;如图,将沿边折起,连结,使,求证:(1)平面平面;(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.19.(12分)2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID—19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,…,10)建立模型和.(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;(3)以下是1月25日至1月29日累计确诊人数的真实数据,根据(2)的结果回答下列问题:时间1月25日1月26日1月27日1月28日1月29日累计确诊人数的真实数据19752744451559747111(ⅰ)当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?(ⅱ)2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?附:对于一组数据(,,……,,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:其中,.5.53901938576403152515470010015022533850720.(12分)如图,已知平面与直线均垂直于所在平面,且.(1)求证:平面;(2)若,求与平面所成角的正弦值.21.(12分)设等差数列满足,.(1)求数列的通项公式;(2)求的前项和及使得最小的的值.22.(10分)椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)过点且斜率不为0的直线与椭圆交于,两点.为坐标原点,为椭圆的右顶点,求四边形面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

利用换元法设,则等价为有且只有一个实数根,分三种情况进行讨论,结合函数的图象,求出的取值范围.【详解】解:设,则有且只有一个实数根.当时,当时,,由即,解得,结合图象可知,此时当时,得,则是唯一解,满足题意;当时,此时当时,,此时函数有无数个零点,不符合题意;当时,当时,,此时最小值为,结合图象可知,要使得关于的方程有且只有一个实数根,此时.综上所述:或.故选:A.【点睛】本题考查了函数方程根的个数的应用.利用换元法,数形结合是解决本题的关键.2、B【解析】

由题,可求出,所以,根据共线定理,设,利用向量三角形法则求出,结合题给,得出,进而得出,最后利用二次函数求出的最大值,即可求出.【详解】由题意,直角梯形中,,,,,可求得,所以·∵点在线段上,设,则,即,又因为所以,所以,当时,等号成立.所以.故选:B.【点睛】本题考查平面向量线性运算中的加法运算、向量共线定理,以及运用二次函数求最值,考查转化思想和解题能力.3、D【解析】

运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,,所以,当时,的最小值,故选D.【点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.4、A【解析】

用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像.【详解】设,由于,排除B选项;由于,所以,排除C选项;由于当时,,排除D选项.故A选项正确.故选:A【点睛】本题考查了函数图像的性质,属于中档题.5、C【解析】

根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【点睛】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.6、A【解析】

列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根据古典概型概率公式可得结果.【详解】金、木、水、火、土任取两类,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、火土、木水、水金、金土共5结果,所以2类元素相生的概率为,故选A.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.7、C【解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系8、B【解析】

根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【详解】从八卦中任取两卦基本事件的总数种,这两卦的六根线中恰有四根阴线的基本事件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.9、C【解析】

根据服从的正态分布可得,,将所求概率转化为,结合正态分布曲线的性质可求得结果.【详解】由题意,,,则,,所以,.故果实直径在内的概率为0.8185.故选:C【点睛】本题考查根据正态分布求解待定区间的概率问题,考查了正态曲线的对称性,属于基础题.10、A【解析】

根据复数的除法运算,代入化简即可求解.【详解】复数,则故选:A.【点睛】本题考查了复数的除法运算与化简求值,属于基础题.11、D【解析】试题分析:,,所以,所以由程序框图输出的为.故选D.考点:1、程序框图;2、定积分.12、D【解析】

使用不同方法用表示出,结合平面向量的基本定理列出方程解出.【详解】解:,又解得,所以故选:D【点睛】本题考查了平面向量的基本定理及其意义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

恰好有3个不同的零点恰有三个根,然后转化成求函数值域即可.【详解】解:恰好有3个不同的零点恰有三个根,令,,在递增;,递减,递增,时,在有一个零点,在有2个零点;故答案为:.【点睛】已知函数的零点个数求参数的取值范围是重点也是难点,这类题一般用分离参数的方法,中档题.14、2【解析】试题分析:,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角15、【解析】

根据题意画出图形,设,利用三角形相似求得的值,代入三角形的面积公式,即可求解.【详解】如图所示,设,由与相似,可得,解得,再由与相似,可得,解得,由三角形的面积公式,可得的面积为.故答案为:.【点睛】本题主要考查了直线与圆的位置关系的应用,以及三角形相似的应用,着重考查了数形结合思想,以及推理与运算能力,属于基础题.16、【解析】

先分间隔一个与不间隔分类计数,再根据捆绑法求排列数,最后求和得结果.【详解】若“阅读文章”与“视听学习”两大学习板块相邻,则学习方法有种;若“阅读文章”与“视听学习”两大学习板块之间间隔一个答题板块的学习方法有种;因此共有种.故答案为:【点睛】本题考查排列组合实际问题,考查基本分析求解能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由已知利用三角函数恒等变换的应用,正弦定理可求,即可求的值.(2)利用三角函数恒等变换的应用,可得,根据题意,得到,解得,得到函数的解析式,进而求得的值,利用三角函数恒等变换的应用可求的值.【详解】(1)由题意,根据正弦定理,可得,又由,所以,可得,即,又因为,则,可得,∵,∴.(2)由(1)可得,所以函数的图象的一条对称轴方程为,∴,得,即,∴,又,∴,∴.【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18、(1)证明见详解;(2)【解析】

(1)由题可知,等腰直角三角形与等边三角形,在其公共边AC上取中点O,连接、,可得,可求出.在中,由勾股定理可证得,结合,可证明平面.再根据面面垂直的判定定理,可证平面平面.(2)以为坐标原点,建立如图所示的空间直角坐标系,由点F在线段上,设,得出的坐标,进而求出平面的一个法向量.用向量法表示出与平面所成角的正弦值,由其等于,解得.再结合为平面的一个法向量,用向量法即可求出与的夹角,结合图形,写出二面角的大小.【详解】证明:(1)在中,为正三角形,且在中,为等腰直角三角形,且取的中点,连接,,,平面平面平面..平面平面(2)以为坐标原点,建立如图所示的空间直角坐标系,则,,,设.则设平面的一个法向量为.则,令,解得与平面所成角的正弦值为,整理得解得或(含去)又为平面的一个法向量,二面角的大小为.【点睛】本题考查了线面垂直的判定,面面垂直的判定,向量法解决线面角、二面角的问题,属于中档题.19、(1)适宜(2)(3)(ⅰ)回归方程可靠(ⅱ)防护措施有效【解析】

(1)根据散点图即可判断出结果.(2)设,则,求出,再由回归方程过样本中心点求出,即可求出回归方程.(3)(ⅰ)利用表中数据,计算出误差即可判断回归方程可靠;(ⅱ)当时,,与真实值作比较即可判断有效.【详解】(1)根据散点图可知:适宜作为累计确诊人数与时间变量的回归方程类型;(2)设,则,,,;(3)(ⅰ)时,,,当时,,,当时,,,所以(2)的回归方程可靠:(ⅱ)当时,,10150远大于7111,所以防护措施有效.【点睛】本题考查了函数模型的应用,在求非线性回归方程时,现将非线性的化为线性的,考查了误差的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论