版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
林芝2024届高一数学第一学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,BC边上的高等于,则()A. B.C. D.2.已知,函数在上递减,则的取值范围为()A. B.C. D.3.设m,n为两条不同的直线,,为两个不同的平面,则下列结论正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则4.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为A. B.C. D.5.已知角的终边过点,则()A. B.C. D.6.《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其外形由圆柱和长方体组合而成.已知某组合体由圆柱和长方体组成,如图所示,圆柱的底面直径为1寸,长方体的长、宽、高分别为3.8寸,3寸,1寸,该组合体的体积约为12.6立方寸,若取3.14,则圆柱的母线长约为()A.0.38寸 B.1.15寸C.1.53寸 D.4.59寸7.已知,则A.-2 B.-1C. D.28.已知角的终边过点,若,则A.-10 B.10C. D.9.已知函数若曲线与直线的交点中,相邻交点的距离的最小值为,则的最小正周期为A. B.C. D.10.设,,,则,,三者的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在区间上单调递增,则实数的取值范围是__________.12.(2016·桂林高二检测)如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________.(1)A′C⊥BD.(2)∠BA′C=90°.(3)CA′与平面A′BD所成的角为30°.(4)四面体A′-BCD的体积为.13.圆的圆心坐标是__________14.已知是R上的奇函数,且当时,,则的值为___________.15.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________16.已知函数,若方程有四个不同的解,且,则的最小值是______,的最大值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合.(1)若,求;(2)若,求实数m的取值范围.18.已知函数(其中),函数(其中).(1)若且函数存在零点,求的取值范围;(2)若是偶函数且函数的图象与函数的图象只有一个公共点,求实数的取值范围.19.已知二次函数满足:,且该函数的最小值为1.(1)求此二次函数的解析式;(2)若函数的定义域为(其中),问是否存在这样的两个实数m,n,使得函数的值域也为A?若存在,求出m,n的值;若不存在,请说明理由.20.已知函数(1)求函数的最小正周期和单调递减区间;(2)将函数的图像向左平移单位长度,再将所得图像上各点的横坐标缩短为原来的,纵坐标不变,得到函数的图像,求在上的值域21.已知函数的图象关于原点对称,其中为常数(1)求的值;(2)当时,恒成立,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】设,故选C.考点:解三角形.2、B【解析】求出f(x)的单调减区间A,令(,π)⊆A,解出ω的范围【详解】解:f(x)sin(ωx),令,解得x,k∈Z∵函数f(x)sin(ωx)(ω>0)在(,π)上单调递减,∴,解得ω2k,k∈Z∴当k=0时,ω故选:B【点睛】本题考查了三角函数的单调性与单调区间,考查转化能力与计算能力,属于基础题3、D【解析】根据线面的位置关系可判断A;举反例判断B、C;由面面垂直的判定定理可判断D,进而可得正确选项.详解】对于A:若,,则或,故选项A不正确;对于B:如图平面为平面,平面为平面,直线为,直线为,满足,,,但与相交,故选项B不正确;对于C:如图在正方体中,平面为平面,平面为平面,直线为,直线为,满足,,,则,故选项C不正确;对于D:若,,可得或,若,因为,由面面垂直的判定定理可得;若,可过作平面与相交,则交线在平面内,且交线与平行,由可得交线与垂直,由面面垂直的判定定理可得,故选项D正确;故选:D.4、A【解析】由题意利用函数的图象变换法则,即可得出结论【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选【点睛】本题主要考查函数的图象变换法则,注意对的影响5、A【解析】根据三角函数的定义计算可得;【详解】解:因为角终边过点,所以;故选:A6、C【解析】先求出长方体的体积,进而求出圆柱的体积,利用求出的圆柱体体积和圆柱的底面半径为0.5寸,求出圆柱的母线长【详解】由题意得,长方体的体积为(立方寸),故圆柱的体积为(立方寸).设圆柱的母线长为l,则由圆柱的底面半径为0.5寸,得,计算得:(寸).故选:C7、B【解析】,,则,故选B.8、A【解析】因为角的终边过点,所以,得,故选A.9、D【解析】将函数化简,根据曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,即ωx2kπ或ωx2kπ,k∈Z,建立关系,可得ω的值,即得f(x)的最小正周期【详解】解:函数f(x)=cosωx+sinωx,ω>0,x∈R化简可得:f(x)sin(ωx)∵曲线y=f(x)与直线y=1的相交,即ωx2kπ或ωx2kπ,k∈Z,∴()+2kπ=ω(x2﹣x1),令k=0,∴x2﹣x1,解得:ω∴y=f(x)的最小正周期T,故选D【点睛】本题考查了和差公式、三角函数的图象与性质、三角函数的方程的解法,考查了推理能力与计算能力,属于中档题10、D【解析】根据对数的运算变形、,再根据对数函数的性质判断即可;【详解】解:,,因为函数在定义域上单调递增,且,所以,即,故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】按a值对函数进行分类讨论,再结合函数的性质求解作答.【详解】当时,函数在R上单调递增,即在上递增,则,当时,函数是二次函数,又在上单调递增,由二次函数性质知,,则有,解得,所以实数的取值范围是.故答案为:12、(2)(4)【解析】详解】若A′C⊥BD,又BD⊥CD,则BD⊥平面A′CD,则BD⊥A′D,显然不可能,故(1)错误.因为BA′⊥A′D,BA′⊥CD,故BA′⊥平面A′CD,所以BA′⊥A′C,所以∠BA′C=90°,故(2)正确.因为平面A′BD⊥平面BCD,BD⊥CD,所以CD⊥平面A′BD,CA′与平面A′BD所成的角为∠CA′D,因为A′D=CD,所以∠CA′D=,故(3)错误.四面体A′-BCD的体积为V=S△BDA′·h=××1=,因为AB=AD=1,DB=,所以A′C⊥BD,综上(2)(4)成立.点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.13、【解析】根据圆的标准方程,即可求得圆心坐标.【详解】因为圆所以圆心坐标为故答案为:【点睛】本题考查了圆的标准方程与圆心的关系,属于基础题.14、【解析】由已知函数解析式可求,然后结合奇函数定义可求.【详解】因为是R上的奇函数,且当时,,所以,所以故答案为:15、0【解析】由于正三角形的内角都为,且边BC所在直线的斜率是0,不妨设边AB所在直线的倾斜角为,则斜率为,则边AC所在直线的倾斜角为,斜率为,所以AC,AB所在直线的斜率之和为16、①.1②.4【解析】画出的图像,再数形结合分析参数的的最小值,再根据对称性与函数的解析式判断中的定量关系化简再求最值即可.【详解】画出的图像有:因为方程有四个不同的解,故的图像与有四个不同的交点,又由图,,故的取值范围是,故的最小值是1.又由图可知,,,故,故.故.又当时,.当时,,故.又在时为减函数,故当时取最大值.故答案为:(1).1(2).4【点睛】本题主要考查了数形结合求解函数零点个数以及范围的问题,需要根据题意分析交点间的关系,并结合函数的性质求解.属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)时,求出集合,由此能求出;(2)由可得,当时,,当时,,由此能求出实数的取值范围【小问1详解】解:时,集合,,【小问2详解】解:,,当时,,解得,当时,,解得,实数的取值范围是18、(1);(2)或.【解析】(1)根据题意,分离参数且利用对数型复合函数的单调性求得的值域,即可求得参数的取值范围;(2)根据是偶函数求得参数,再根据题意,求解指数方程即可求得的取值范围.【小问1详解】由题意知函数存零点,即有解.又,易知在上是减函数,又,,即,所以,所以的取值范围是.【小问2详解】的定义域为,若是偶函数,则,即解得.此时,,所以即为偶函数.又因为函数与的图象有且只有一个公共点,故方程只有一解,即方程有且只有一个实根令,则方程有且只有一个正根①当时,,不合题意,②当时,方程有两相等正根,则,且,解得,满足题意;③若一个正根和一个负根,则,即时,满足题意,综上所述:实数的取值范围为或.【点睛】本题考察利用函数奇偶性求参数值,以及对数方程的求解,对数型复合函数值域的求解,解决问题的关键是熟练的掌握对数函数的性质,属综合困难题.19、(1);(2)存在,,.【解析】(1)设,由,求出值,可得二次函数的解析式;(2)分①当时,②当时,③当时,三种情况讨论,可得存在满足条件的,,其中,【详解】解:(1)依题意,可设,因,代入得,所以.(2)假设存在这样m,n,分类讨论如下:当时,依题意,即两式相减,整理得,代入进一步得,产生矛盾,故舍去;当时,依题意,若,,解得或(舍去);若,,产生矛盾,故舍去;当时,依题意,即解得,产生矛盾,故舍去综上:存在满足条件的m,n,其中,20、(1)最小正周期为,单调递减区间为,;(2).【解析】(1)利用二倍角正余弦公式及辅助角公式可得,再根据正弦型函数的性质求最小正周期和递减区间.(2)由(1)及图象平移有,应用整体法及正弦函数的性质求区间值域.【小问1详解】由题设,,所以的最小正周期为,令,,解得,,因此,函数的单调递减区间为,【小问2详解】由(1)知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年债权转让合同详细规定
- 二零二四年度互联网企业间电子商务平台技术转让合同2篇
- 2024年司机紧急聘用协议样本一
- 2024年度融资借款合同标的及借款金额和还款方式2篇
- 二零二四年高端装备制造出口海外全面合作协议3篇
- 全新文化艺术表演合同(2024版)3篇
- 2024全新业务协作协议范本版
- 2024年度教育信息化建设及运维服务合同2篇
- 2024年地砖销售协议规范版
- 2024嘉兴人力资源信息安全合同
- 安全管理网络图.
- 保安服务劳务外包合同书范本
- 有机玻璃生产线项目可行性研究报告
- 产品ID设计需求单.doc
- 人音乐版《高中音乐鉴赏》《学堂乐歌》教案
- 上海大学微机实践报告(共9页)
- 田径场地画法
- 摔箱测试标准
- 白血病淋巴瘤免疫分型
- 五子棋基本知识
- 经皮肾镜联合输尿管软镜治疗复杂肾结石治疗体会
评论
0/150
提交评论