版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古通辽市科左后旗甘旗卡二中2024届高一上数学期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数为奇函数,则()A.-1 B.0C.1 D.22.已知,那么下列结论正确的是()A. B.C. D.3.函数的图像大致为()A. B.C. D.4.设:,:,则是的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件5.已知函数的部分图象如图所示,则的值可以为A.1 B.2C.3 D.46.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与7.命题“任意实数”的否定是()A.任意实数 B.存在实数C.任意实数 D.存实数8.从数字中随机取两个不同的数,分别记为和,则为整数的概率是()A. B.C. D.9.已知直线,平面满足,则直线与直线的位置关系是A.平行 B.相交或异面C.异面 D.平行或异面10.若偶函数在定义域内满足,且当时,;则的零点的个数为()A.1 B.2C.9 D.18二、填空题:本大题共6小题,每小题5分,共30分。11.《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦矢+).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,弦长等于9m的弧田.按照上述经验公式计算所得弧田的面积是________.12.在平面直角坐标系中,以轴为始边作两个锐角,,它们的终边分别与单位圆相交于,两点,,的纵坐标分别为,.则的终边与单位圆交点的纵坐标为_____________.13.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速v(单位:)可以表示为,其中L表示鲑鱼的耗氧量的单位数,当一条鲑鱼以的速度游动时,它的耗氧量的单位数为___________.14.已知函数若是函数的最小值,则实数a的取值范围为______15.函数y=的定义域是______.16.若圆上有且仅有两个点到直线的距离等于1,则半径R的取值范围是_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,求的最小值;(2)求函数的定义域18.已知函数,在同一周期内,当时,取得最大值3;当时,取得最小值.(1)求函数的解析式;(2)求函数的单调减区间;(3)当时,函数有两个零点,求实数m的取值范围.19.设函数(1)若,求的值(2)求函数在R上的最小值;(3)若方程在上有四个不相等的实数根,求a的取值范围20.已知在半径为的圆中,弦的长为.(1)求弦所对的圆心角的大小;(2)求圆心角所在的扇形弧长及弧所在的弓形的面积.21.计算求值:(1)(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用函数是奇函数得到,然后利用方程求解,,则答案可求【详解】解:函数为奇函数,当时,,所以,所以,,故故选:C.2、B【解析】根据不等式的性质可直接判断出结果.【详解】,,知A错误,B正确;当时,,C错误;当时,,D错误.故选:B.3、B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4、B【解析】解出不等式,根据集合的包含关系,可得到答案.【详解】解:因为:,所以:或,因为:,所以是的充分不必要条件.故选:B【点睛】本题考查了充分不必要条件的判断,两个命题均是范围形式,解决问题常见的方法是判断出集合之间包含关系.5、B【解析】由图可知,故,选.6、B【解析】根据两个函数的定义域相同且对应关系也相同,逐项判断即可【详解】由于函数的定义域为,函数的定义域为,所以与不是同一个函数,故A错误;由于的定义域为,函数且定义域为,所以与是同一函数,故B正确;在函数中,,解得或,所以函数的定义域为,在函数中,,解得,所以的定义域为,所以与不是同一函数,故C错误;由于函数的定义域为,函数定义域为为,所以与不是同一函数,故D错误;故选:B.7、B【解析】根据含全称量词的命题的否定求解.【详解】根据含量词命题的否定,命题“任意实数”的否定是存在实数,故选:B8、B【解析】先计算出从数字中随机取两个不同的数,共有种情况,再求出满足为整数的情况,即可求出为整数的概率.【详解】解:从数字中随机取两个不同的数,则有种选法,有种选法,共有种情况;则满足为整数的情况如下:当时,或有种情况;当时,有种情况;当或时,则不可能为整数,故共有种情况,故为整数的概率是:.故选:B.9、D【解析】∵a∥α,∴a与α没有公共点,b⊂α,∴a、b没有公共点,∴a、b平行或异面故选D.10、D【解析】由题,的零点的个数即的交点个数,再根据的对称性和周期性画出图象,数形结合分析即可【详解】由可知偶函数周期为2,故先画出时,的函数图象,再分别利用偶函数关于轴对称、周期为2画出的函数图象,则的零点个数即为的零点个数,即的交点个数,易得在上有个交点,故在定义域内有18个交点.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】如下图所示,在中,求出半径,即可求出结论.【详解】设弧田的圆心为,弦为,为中点,连交弧为,则,所以矢长为,在中,,,所以,,所以弧田的面积为.故答案为:.【点睛】本题以数学文化为背景,考查直角三角形的边角关系,认真审题是解题的关键,属于基础题.12、【解析】根据任意角三角函数的定义可得,,,,再由展开求解即可.【详解】以轴为始边作两个锐角,,它们的终边分别与单位圆相交于,两点,,的纵坐标分别为,所以,是锐角,可得,因为锐角的终边与单位圆相交于Q点,且纵坐标为,所以,是锐角,可得,所以,所以的终边与单位圆交点的纵坐标为.故答案为:.13、8100【解析】将代入,化简即可得答案.【详解】因为鲑鱼的游速v(单位:)可以表示为:,所以,当一条鲑鱼以的速度游动时,,∴,∴故答案为:8100.14、【解析】考虑分段函数的两段函数的最小值,要使是函数的最小值,应满足哪些条件,据此列出关于a的不等式,解得答案.【详解】要使是函数的最小值,则当时,函数应为减函数,那么此时图象的对称轴应位于y轴上或y轴右侧,即当时,,当且仅当x=1时取等号,则,解得,所以,故答案为:.15、【解析】要使函数有意义,需满足,函数定义域为考点:函数定义域16、【解析】根据题意分析出直线与圆的位置关系,再求半径的范围.【详解】圆心到直线的距离为2,又圆(x﹣1)2+(y+1)2=R2上有且仅有两个点到直线4x+3y=11的距离等于1,满足,即:|R﹣2|<1,解得1<R<3故半径R的取值范围是1<R<3(画图)故答案为:【点睛】本题考查直线与圆的位置关系,考查数形结合的思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3;(2)或【解析】(1)由,利用基本不等式即可求解.(2)由题意可得,解一元二次不等式即可求解.【详解】解:(1),,,当且仅当,即时取等号,的最小值为3;(2)由题知,令,解得或∴函数定义域为或18、(1);(2);(3).【解析】(1)根据函数在同一周期的最值,确定最小正周期和,再由最大值求出,即可得出函数解析式;(2)根据正弦函数的单调递减区间列出不等式求解,即可得出结果;(3)根据自变量的范围,先确定的范围及单调性,根据函数有两个零点,推出函数与直线有两不同交点,进而可得出结果.【详解】(1)因为函数,在同一周期内,当时,取得最大值3;当时,取得最小值,,,则,所以;又,所以,解得,又,所以,因此;(2)由,解得,∴函数的单调递减区间为;(3)由,解得,即函数的单调递增区间为;,所以在区间上单调递增,在上单调递增;所以,,,又有两个零点,等价于方程有两不等实根,即函数与直线有两不同交点,因此,只需,解得,即实数的取值范围是【点睛】思路点睛:已知含三角函数的函数在给定区间的零点个数求参数时,一般需要分离参数,将问题转化为三角函数与参数对应的直线交点问题求解,利用三角函数的性质,确定其在给定区间的单调性与最值等,即可求解(有时需要利用数形结合的方法求解).19、(1)(2)(3)【解析】(1)利用求得,由此求得.(2)利用换元法,对进行分类讨论,结合二次函数的性质求得正确答案.(3)利用换元法,结合二次函数零点分布等知识来求得的取值范围.【小问1详解】因,所以即此时,由【小问2详解】令,,则,对称轴为①,即,②,即,③,即,综上可知,.【小问3详解】令,由题意可知,当时,有两个不等实数解,所以原题可转化为在内有两个不等实数根所以有20、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版市政工程挖掘机租赁及施工配合合同协议书3篇
- 2025版智能交通管理系统软件开发与运营服务合同3篇
- 2025版城市绿地养护劳务分包合同模板4篇
- 企业人力资源管理概念
- 二零二五版知识产权保密与竞业限制服务合同3篇
- 塑料薄膜光学性能研究考核试卷
- 2025版事业单位教师岗位聘用合同续签协议书3篇
- 2025年度码头转租及船舶停靠服务外包合同4篇
- 04毛首鞭形线虫简称鞭虫47课件讲解
- 2025年食品行业食品安全风险评估合同范本3篇
- 垃圾处理厂工程施工组织设计
- 天疱疮患者护理
- 2025年蛇年新年金蛇贺岁金蛇狂舞春添彩玉树临风福满门模板
- 《建筑制图及阴影透视(第2版)》课件 4-直线的投影
- 新生物医药产业中的人工智能药物设计研究与应用
- 防打架殴斗安全教育课件
- 损失补偿申请书范文
- 压力与浮力的原理解析
- 铁路损伤图谱PDF
- 装修家庭风水学入门基础
- 移动商务内容运营(吴洪贵)任务二 社群的种类与维护
评论
0/150
提交评论