版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏青吴忠市铜峡高级中学2023-2024学年数学高一上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知实数满足,那么的最小值为(
)A. B.C. D.2.在上,满足的的取值范围是A. B.C. D.3.函数的定义城为()A B.C. D.4.在直角梯形中,,,,分别为,的中点,以为圆心,为半径的圆交于,点在弧上运动(如图).若,其中,,则的取值范围是A. B.C. D.5.定义域为R的偶函数满足对任意的,有=且当时,=,若函数=在(0,+上恰有六个零点,则实数的取值范围是A. B.C. D.6.已知,则=A.2 B.C. D.17.直线的倾斜角是()A.30° B.60°C.120° D.150°8.已知函数f(x)=3x A. B.C. D.9.如图,在平面四边形中,,将其沿对角线对角折成四面体,使平面⊥平面,若四面体的顶点在同一球面上,则该求的体积为A. B.C. D.10.已知,则三者的大小关系是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知sinα+cosα=,α∈(-π,0),则tanα=________.12.已知非空集合,(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围13.已知球O的内接圆柱的轴截面是边长为2的正方形,则球O的表面积为________.14.已知,,且,则的最小值为________.15.函数的定义域为_________________________16.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,.(1)求的值;(2)若向量满足,,求向量的坐标.18.声强级(单位:)由公式给出,其中声强(单位:).(1)一般正常人听觉能忍受的最高声强为,能听到的最低声强为,求人听觉的声强级范围;(2)在一演唱会中,某女高音的声强级高出某男低音的声强级,请问该女高音的声强是该男低音声强的多少倍?19.完成下列两个小题(1)角为第三象限的角,若,求的值;(2)已知角为第四象限角,且满足,则的值20.在单位圆中,已知第二象限角的终边与单位圆的交点为,若.(1)求、、的值;(2)分别求、、的值.21.已知二次函数f(x)满足:f(0)=f(4)=4,且该函数的最小值为1(1)求此二次函数f(x)的解析式;(2)若函数f(x)的定义域为A=m,n(其中0<m<n),问是否存在这样的两个实数m,n,使得函数f(x)的值域也为A?若存在,求出m,n(3)若对于任意x1∈0,3,总存在x2∈1,2
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】表示直线上的点到原点的距离,利用点到直线的距离公式求得最小值.【详解】依题意可知表示直线上的点到原点的距离,故原点到直线的距离为最小值,即最小值为,故选A.【点睛】本小题主要考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.2、C【解析】直接利用正弦函数的性质求解即可【详解】上,满足的的取值范围:.故选C【点睛】本题考查正弦函数的图象与性质,考查计算能力,是基础题3、C【解析】由对数函数的性质以及根式的性质列不等式组,即可求解.【详解】由题意可得解得,所以原函数的定义域为,故选:C4、D【解析】建立如图所示的坐标系,则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,),λ,μ用参数α进行表示,利用辅助角公式化简,即可得出结论【详解】解:建立如图所示的坐标系,则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,)⇒cosα=2λ﹣μ,sinα=λ⇒λ,∴6λ+μ=6()2(sinα+cosα)=2sin()∵,∴sin()∴2sin()∈[2,2],即6λ+μ的取值范围是[2,2]故选D【点睛】本题考查平面向量的坐标运算,考查学生的计算能力,正确利用坐标系是关键.属于中档题5、C【解析】因为=,且是定义域为R的偶函数,令,则,解得,所以有=,所以是周期为2的偶函数,因为当时,=,其图象为开口向下,顶点为(3,0)的抛物线,因为函数=在(0,+上恰有六个零点,令,因为所以,所以,要使函数=在(0,+上恰有六个零点,如图所示:只需要,解得.故选C.点睛:本题考查函数的零点及函数与方程,解答本题时要注意先根据函数给出的性质对称性和周期性,画出函数的图象,然后结合函数的零点个数即为函数和图象交点的个数,利用数形结合思想求得实数的取值范围.6、D【解析】.故选.7、C【解析】设直线的倾斜角为,得到,即可求解,得到答案.【详解】设直线的倾斜角为,又由直线,可得直线的斜率为,所以,又由,解得,即直线的倾斜角为,故选:C【点睛】本题主要考查了直线的斜率与倾斜角的关系,以及直线方程的应用,其中解答中熟记直线的斜率和直线的倾斜角的关系是解答的关键,着重考查了推理与运算能力,属于基础题.8、B【解析】根据对数的运算性质求出,再根据指数幂的运算求出即可.【详解】由题意知,,则,所以.故选:B9、A【解析】平面四边形ABCD中,AB=AD=CD=2,BD=2,BD⊥CD,将其沿对角线BD折成四面体A'﹣BCD,使平面A'BD⊥平面BCD.四面体A'﹣BCD顶点在同一个球面上,△BCD和△A'BC都是直角三角形,BC的中点就是球心,所以BC=2,球的半径为:;所以球的体积为:故答案选:A点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.10、C【解析】a=log30.2<0,b=30.2>1,c=0.30.2∈(0,1),∴a<c<b故选C点睛:这个题目考查的是比较指数和对数值的大小;一般比较大小的题目,常用的方法有:先估算一下每个数值,看能否根据估算值直接比大小;估算不行的话再找中间量,经常和0,1,-1比较;还可以构造函数,利用函数的单调性来比较大小.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值.【详解】因为sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因为α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,与sinα+cosα=联立解得sinα=-,cosα=,所以tanα=.故答案为:.【点睛】该题考查的是有关三角函数恒等变换化简求值问题,涉及到的知识点有同角三角函数关系式,在解题的过程中,注意这三个式子是知一求二,属于简单题目.12、(1)(2)【解析】(1)根据集合的运算法则计算;(2)根据充分不必要条件的定义求解【小问1详解】由已知,或,所以或=;【小问2详解】“”是“”的充分不必要条件,则,解得,所以的范围是13、【解析】根据内接圆柱的轴截面是边长为2的正方形,确定球O的半径,再由球的表面积公式即得。【详解】由题得,圆柱底面直径为2,球的半径为R,球O的内接圆柱的轴截面是边长为2的正方形,则圆柱的轴截面的对角线即为球的直径,故,则球的表面积.故答案为:【点睛】本题考查空间几何体,球的表面积,是常见的考题。14、12【解析】,展开后利用基本不等式可求【详解】∵,,且,∴,当且仅当,即,时取等号,故的最小值为12故答案为:1215、(-1,2).【解析】分析:由对数式真数大于0,分母中根式内部的代数式大于0联立不等式组求解x的取值集合得答案详解:由,解得﹣1<x<2∴函数f(x)=+ln(x+1)的定义域为(﹣1,2)故答案为(﹣1,2)点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)16、【解析】计算出一个弓形的面积,由题意可知,勒洛三角形由三个全等的弓形以及一个正三角形构成,利用弓形和正三角形的面积可求得结果.【详解】由弧长公式可得,可得,所以,由和线段所围成的弓形的面积为,而勒洛三角形由三个全等的弓形以及一个正三角形构成,因此,该勒洛三角形的面积为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)7;(2).【解析】(1)先计算,再求模即可;(2)设,进而计算,,再根据垂直与共线的坐标关系求解即可.【详解】解:(1)因为向量,,所以,所以(2)设,,因为,,所以,解得所以18、(1).(2)倍.【解析】(1)由题知:,∴,∴,∴人听觉的声强级范围是.(2)设该女高音的声强级为,声强为,该男低音的声强级为,声强为,由题知:,则,∴,∴.故该女高音的声强是该男低音声强的倍.19、(1);(2).【解析】(1)根据同角的基本关系和角在第三象限,即可求出结果.(2)对两边平方,以及,可得,再根据角为第四象限角,,可得,再由,即可求出结果.【小问1详解】解:因为,所以,即,又,所以,所以.又角为第三象限的角,所以;【小问2详解】解:因为,所以,所以,即又角为第四象限角,,所以,所以所以.20、(1),,(2),,【解析】(1)先由三角函数的定义得到,再利用同角三角函数基本关系进行求解;(2)利用诱导公式进行化简求值.【小问1详解】解:由三角函数定义,得,由得,又因为为第二象限角,所以,则;【小问2详解】解:由诱导公式,得:,则,.21、(1)f(x)=34x2-3x+4(2)存在满足条件的m,n,其中【解析】1设f(x)=a(x-2)2+1,由f(0)=4,求出a2分m<n≤2时,当m<2<n时,当2≤m<n时,三种情况讨论,可得满足条件的m,n,其中m=1,n=4;3若对于任意的x1∈0,3,总存在x解析:(1)依题意,可设f(x)=a(x-2)2+1,因f(0)=4,代入得(2)假设存在这样的m,n,分类讨论如下:当m<n≤2时,依题意,f(m)=n,f(n)=m,即3m+n=83,代入进一步得当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年自动化设备快速运输合同3篇
- 二零二五版家电回收与翻新销售合同范本3篇
- 二零二五版茶叶种植基地农业科技示范推广合同3篇
- 二零二五版矿山洞采矿施工环保责任合同3篇
- 二零二五年度建筑工程款抵顶工业地产使用权合同3篇
- 二零二五版LNG运输及船舶维修合同3篇
- 二零二五版企业股份回购合同协议书6篇
- 二零二五年高铁站广告牌施工与商业合作合同范本3篇
- 二零二五年度深圳物业管理合同规定2篇
- 二零二五年度防雷安全风险评估与整改合同3篇
- 高处作业安全培训课件-
- 职中英语期末考试质量分析
- 中国的世界遗产智慧树知到答案章节测试2023年辽宁科技大学
- 急性腹泻与慢性腹泻修改版
- 先天性肌性斜颈的康复
- 《国际市场营销》案例
- GB/T 37518-2019代理报关服务规范
- GB/T 156-2017标准电压
- PPT沟通的艺术课件
- 内科学:巨幼细胞性贫血课件
- 暑假家校联系情况记录表
评论
0/150
提交评论