版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面向量全真试题专项解析-2024届高一上数学期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.设集合,则()A. B.C. D.2.已知方程,在区间(-2,0)上的解可用二分法求出,则的取值范围是A.(-4,0) B.(0,4)C.[-4,0] D.[0,4]3.下列函数中既是偶函数,又在上单调递增的是()A B.C. D.4.已知在△ABC中,cos=-,那么sin+cosA=()A. B.-C. D.5.下列函数是奇函数,且在上单调递增的是()A. B.C. D.6.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:)与时间t(单位:h)间的关系为,其中,k是常数.已知当时,污染物含量降为过滤前的,那么()A. B.C. D.7.已知直线⊥平面,直线平面,给出下列命题:①∥②⊥∥③∥⊥④⊥∥其中正确命题的序号是A.①③ B.②③④C.①②③ D.②④8.已知函数在上有两个零点,则的取值范围为()A. B.C. D.9.设,表示两个不同平面,表示一条直线,下列命题正确的是()A.若,,则.B.若,,则.C.若,,则.D.若,,则.10.若,则的大小关系为()A. B.C. D.11.由直线上的点向圆引切线,则切线长的最小值为A. B.C. D.12.已知函数若曲线与直线的交点中,相邻交点的距离的最小值为,则的最小正周期为A. B.C. D.二、填空题(本大题共4小题,共20分)13.____.14.已知,且,则__15.已知是球上的点,,,,则球的表面积等于________________16.甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.三、解答题(本大题共6小题,共70分)17.函数(其中)的图像如图所示.(Ⅰ)求函数的解析式;(Ⅱ)求函数在上的最大值和最小值.18.已知直线:与圆:交于,两点.(1)求的取值范围;(2)若,求.19.已知a、b>0且都不为1,函数f(1)若a=2,b=12,解关于x的方程(2)若b=2a,是否存在实数t,使得函数gx=tx+log2f20.已知集合,(1)当时,求;(2)若,求21.如图是函数的部分图象.(1)求函数的解析式;(2)若,,求.22.已知动圆经过点和(1)当圆面积最小时,求圆的方程;(2)若圆的圆心在直线上,求圆的方程.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】根据交集定义运算即可【详解】因为,所以,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.2、B【解析】根据零点存在性定理,可得,求解即可.【详解】因为方程在区间(-2,0)上的解可用二分法求出,所以有,解得.故选B【点睛】本题主要考查零点的存在性定理,熟记定理即可,属于基础题型.3、C【解析】根据常见函数的单调性和奇偶性,即可容易判断选择.【详解】根据题意,依次分析选项:对于A,,奇函数,不符合题意;对于B,,为偶函数,在上单调递减,不符合题意;对于C,,既是偶函数,又在上单调递增,符合题意;对于D,为奇函数,不符合题意;故选:C.【点睛】本题考查常见函数单调性和奇偶性的判断,属简单题.4、B【解析】因为cos=-,即cos=-,所以sin=-,则sin+cosA=sinAcos+cosAsin+cosA=sin=-.故选B.5、D【解析】利用幂函数的单调性和奇函数的定义即可求解.【详解】当时,幂函数为增函数;当时,幂函数为减函数,故在上单调递减,、和在上单调递增,从而A错误;由奇函数定义可知,和不是奇函数,为奇函数,从而BC错误,D正确.故选:D.6、C【解析】根据题意列出指数式方程,利用指数与对数运算公式求出的值.【详解】由题意得:,即,两边取对数,,解得:.故选:C7、A【解析】利用线面、面面平行的性质和判断以及线面、面面垂直的性质和判断可得结果.【详解】②若,则与不一定平行,还可能为相交和异面;④若,则与不一定平行,还可能是相交.故选A.【点睛】本题是一道关于线线、线面、面面关系的题目,解答本题的关键是熟练掌握直线与平面和平面与平面的平行、垂直的性质定理和判断定理.8、B【解析】先化简,再令,求出范围,根据在上有两个零点,作图分析,求得的取值范围.【详解】,由,又,则可令,又函数在上有两个零点,作图分析:则,解得.故选:B.【点睛】本题考查了辅助角公式,换元法的运用,三角函数的图象与性质,属于中档题.9、C【解析】由或判断;由,或相交判断;根据线面平行与面面平行的定义判断;由或相交,判断.【详解】若,,则或,不正确;若,,则,或相交,不正确;若,,可得没有公共点,即,正确;若,,则或相交,不正确,故选C.【点睛】本题主要考查空间平行关系的性质与判断,属于基础题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.10、D【解析】根据对数的运算性质以及指数函数和对数函数的单调性即可判断【详解】因为,而函数在定义域上递增,,所以故选:D11、B【解析】过圆心作直线的垂线,垂线与直线的交点向圆引切线,切线长最小【详解】圆心,半径,圆心到直线的距离则切线长的最小值【点睛】本题考查圆的切线长,考查数形结合思想,属于基础题12、D【解析】将函数化简,根据曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,即ωx2kπ或ωx2kπ,k∈Z,建立关系,可得ω的值,即得f(x)的最小正周期【详解】解:函数f(x)=cosωx+sinωx,ω>0,x∈R化简可得:f(x)sin(ωx)∵曲线y=f(x)与直线y=1的相交,即ωx2kπ或ωx2kπ,k∈Z,∴()+2kπ=ω(x2﹣x1),令k=0,∴x2﹣x1,解得:ω∴y=f(x)的最小正周期T,故选D【点睛】本题考查了和差公式、三角函数的图象与性质、三角函数的方程的解法,考查了推理能力与计算能力,属于中档题二、填空题(本大题共4小题,共20分)13、.【解析】本题直接运算即可得到答案.【详解】解:,故答案为:.【点睛】本题考查指数幂的运算、对数的运算,是基础题.14、【解析】利用二倍角公式可得,再由同角三角函数的基本关系即可求解.【详解】解:因为,整理可得,解得,或2(舍去),由于,可得,,所以,故答案为:15、【解析】由已知S,A,B,C是球O表面上的点,所以,又,,所以四面体的外接球半径等于以长宽高分别以SA,AB,BC三边长为长方体的外接球的半径,因为,,所以,所以球的表面积点睛:本题考查了球内接多面体,球的表面积公式,属于中档题.其中根据已知条件求球的直径(半径)是解答本题的关键16、1800【解析】由题共有产品4800名,抽取样本为80,则抽取的概率为;,再由50件产品由甲设备生产,则乙设备生产有30件,则乙设备在总体中有;考点:抽样方法的随机性.三、解答题(本大题共6小题,共70分)17、(Ⅰ);(Ⅱ)最大值为1,最小值为0.【解析】(Ⅰ)由图象可得,从而得可得,再根据函数图象过点,可求得,故可得函数的解析式.(Ⅱ)根据的范围得到的范围,得到的范围后可得的范围,由此可得函数的最值试题解析:(Ⅰ)由图像可知,,∴,∴.∴又点在函数的图象上,∴,,∴,,又,∴∴的解析式是(Ⅱ)∵,∴∴,∴,∴当时,函数取得最大值为1;当时,函数取得最小值为0点睛:根据图象求解析式y=Asin(ωx+φ)的方法(1)根据函数图象的最高点或最低点可求得A;(2)ω由周期T确定,即先由图象得到函数的周期,再求出T(3)φ的求法通常有以下两种:①代入法:把图象上的一个已知点代入解析式(此时,A,ω,B已知)求解即可,此时要注意交点在上升区间还是下降区间②五点法:确定φ值时,往往以寻找“五点法”中的零点作为突破口,具体如下:“第一点”(即图象上升时与x轴的交点中距原点最近的交点)为ωx+φ=0;“第二点”(即图象的“峰点”)为ωx+φ=;“第三点”(即图象下降时与x轴的交点)为ωx+φ=;“第四点”(即图象的“谷点”)为ωx+φ=;“第五点”为ωx+φ=18、(1)(2)或.【解析】(1)将圆的一般方程化为标准方程,根据两个交点,结合圆心到直线的距离即可求得的取值范围.(2)根据垂径定理及,结合点到直线距离公式,即可得关于的方程,解方程即可求得的值.【详解】(1)由已知可得圆的标准方程为,圆心,半径,则到的距离,解得,即的取值范围为.(2)因为,解得所以由圆心到直线距离公式可得.解得或.【点睛】本题考查了直线与圆的位置关系判断,直线与圆相交时的弦长关系及垂径定理应用,属于基础题.19、(1)x=-(2)存,t=-1【解析】(1)根据题意可得2x(2)由题意可得gx=tx+log21+2【小问1详解】因为a=2,b=12,所以方程fx=fx+1化简得2x=2-x-1,所以【小问2详解】因为b=2a,故fxgx因为gx是偶函数,故g-x=g而g-x于是tx=-t+1x对任意的实数x20、(1)(2)【解析】(1)化简求得集合,根据补集的概念运算可得结果;(2)由,根据,求出,再求出,计算可求出结果.【小问1详解】由题意得:当时,所以【小问2详解】由题意知:又所以方程的一个根为4,解得,所以,符合题设条件,故21、(1)(2)【解析】(1)由图象得到,且,得到,结合五点法,列出方程求得,即可得到函数的解析式;(2)由题意,求得,,结合利用两角和的正弦公式,即可求解.【小问1详解】解:由图象可得,函数的最大值为,可得,又由,可得,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聊城大学《文学概论二》2022-2023学年第一学期期末试卷
- 2024年4月小学五年级年度工作计划
- 县级环卫制定计划安排
- 春北师大版四年级数学下册教学计划例文
- 五金公司2024年总结及2024年计划
- 客服领班工作计划
- XX省高考录取工作计划
- 档案室××年工作计划
- 卫生院妇幼保健工作计划
- 小学音乐教学年度工作总结
- 2024年高考英语易错题 阅读理解:词义猜测题4大陷阱(教师版新高考专用)
- 期中+(试题)+-2024-2025学年人教PEP版英语六年级上册
- 事业单位工会系统招聘考试题库(高频300题)
- 八年级物理上册 第四章 光的折射 透镜 单元测试卷(苏科版 2024年秋)
- 2024年《建筑节能》理论考试题库(浓缩500题)
- 部编版八年级上册历史问答式复习提纲
- 土地借给其他人使用协议书
- 2022年推拿按摩专业主治医师中级职称考试复习题附参考答案和解析
- 品三国论领导艺术 知到智慧树网课答案
- (完整版)小学一年级口算题(1500题下载)
- 多图中华民族共同体概论课件第十三讲先锋队与中华民族独立解放(1919-1949)根据高等教育出版社教材制作
评论
0/150
提交评论