普洱市重点中学2023年九年级数学第一学期期末联考试题含解析_第1页
普洱市重点中学2023年九年级数学第一学期期末联考试题含解析_第2页
普洱市重点中学2023年九年级数学第一学期期末联考试题含解析_第3页
普洱市重点中学2023年九年级数学第一学期期末联考试题含解析_第4页
普洱市重点中学2023年九年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

普洱市重点中学2023年九年级数学第一学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,点,,均在坐标轴上,,过,,作,是上任意一点,连结,,则的最大值是()A.4 B.5 C.6 D.2.如图,在△ABC中,点G为△ABC的重心,过点G作DE∥BC,分别交AB、AC于点D、E,则△ADE与四边形DBCE的面积比为()A. B. C. D.3.在同一平面上,外有一定点到圆上的距离最长为10,最短为2,则的半径是()A.5 B.3 C.6 D.44.若关于的方程有实数根,则的取值范围是()A. B. C. D.5.将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析是()A. B. C. D.6.如图,D,E分别是△ABC的边AB,AC上的中点,CD与BE交于点O,则S△DOE:S△BOC的值为()A. B. C. D.7.如图,中,,,,则的值是()A. B. C. D.8.如图,矩形矩形,连结,延长分别交、于点、,延长、交于点,一定能求出面积的条件是()A.矩形和矩形的面积之差 B.矩形和矩形的面积之差C.矩形和矩形的面积之差 D.矩形和矩形的面积之差9.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是()A. B. C. D.10.如果两个相似三角形的周长比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1: D.:1二、填空题(每小题3分,共24分)11.如图,等腰直角三角形AOC中,点C在y轴的正半轴上,OC=AC=4,AC交反比例函数y=的图象于点F,过点F作FD⊥OA,交OA与点E,交反比例函数与另一点D,则点D的坐标为_____.12.如图,在中,点在边上,与边分别相切于两点,与边交于点,弦与平行,与的延长线交于点若点是的中点,,则的长为_____.13.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的有________.(填序号)①小红的运动路程比小兰的长;②两人分别在1.09秒和7.49秒的时刻相遇;③当小红运动到点D的时候,小兰已经经过了点D;④在4.84秒时,两人的距离正好等于⊙O的半径.14.一元二次方程的一个根为,另一个根为_____.15.如图,是的外接圆,是的中点,连结,其中与交于点.写出图中所有与相似的三角形:________.16.再读教材:如图,钢球从斜面顶端静止开始沿斜面滚下,速度每秒增加1.5m/s,在这个问题中,距离=平均速度时间t,,其中是开始时的速度,是t秒时的速度.如果斜面的长是18m,钢球从斜面顶端滚到底端的时间为________s.17.如图,在平面直角坐标系中,菱形OABC的边OA在x轴的负半轴上,反比例函数y=(x<0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为6,则k的值等于_____.18.黄冈中学是百年名校,百年校庆上的焰火晚会令很多人记忆犹新.有一种焰火升高高度为h(m)与飞行时间t(s)的关系式是,若这种焰火在点燃升空后到最高处引爆,则从点火到引爆所需时间为__________s.三、解答题(共66分)19.(10分)如图,在中,,点为上一点且与不重合.,交于.(1)求证:;(2)设,求关于的函数表达式;(3)当时,直接写出_________.20.(6分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值.21.(6分)已知关于x的一元二次方程x2-2x+m-1=1.(1)若此方程有两个不相等的实数根,求实数m的取值范围;(2)当Rt△ABC的斜边长c=,且两直角边a和b恰好是这个方程的两个根时,求Rt△ABC的面积.22.(8分)某型号飞机的机翼形状如图所示,已知所在直线互相平行且都与所在直线垂直,.,,,.求的长度(参考数,,,,,)23.(8分)某校为了了解本校七年级学生课外阅读的喜好,随机抽取该校七年级部分学生进行问卷调查(每人只选一种书籍).下图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)这次活动一共调查了名学生;(2)在扇形统计图中,“其他”所在扇形的圆心角等于度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是.24.(8分)通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的.讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数随时间()变化的函数图象如图所示(越大表示注意力越集中).当时,图象是抛物线的一部分,当和时,图象是线段.(1)当时,求注意力指标数与时间的函数关系式.(2)一道数学综合题,需要讲解24,问老师能否安排,使学生听这道题时,注意力的指标数都不低于1.25.(10分)如图,直线与⊙相离,于点,与⊙相交于点,.是直线上一点,连结并延长交⊙于另一点,且.(1)求证:是⊙的切线;(2)若⊙的半径为,求线段的长.26.(10分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.(1)求证:BE=EC(2)填空:①若∠B=30°,AC=2,则DE=______;②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.

参考答案一、选择题(每小题3分,共30分)1、C【分析】连接,,如图,利用圆周角定理可判定点在上,易得,,,,,设,则,由于表示点到原点的距离,则当为直径时,点到原点的距离最大,由于为平分,则,利用点在圆上得到,则可计算出,从而得到的最大值.【详解】解:连接,,如图,,为的直径,点在上,,,,,,,设,,而表示点到原点的距离,当为直径时,点到原点的距离最大,为平分,,,,即,此时,即的最大值是1.故选:.【点睛】本题考查了点与圆的位置关系、圆周角定理、勾股定理等,作出辅助线,得到是解题的关键.2、A【分析】连接AG并延长交BC于H,如图,利用三角形重心的性质得到AG=2GH,再证明△ADE∽△ABC,根据相似三角形的性质得到==,然后根据比例的性质得到△ADE与四边形DBCE的面积比.【详解】解:连接AG并延长交BC于H,如图,∵点G为△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE与四边形DBCE的面积比=.故选:A.【点睛】本题考查了三角形的重心与相似三角形的性质与判定.重心到顶点的距离与重心到对边中点的距离之比为2∶1.3、D【分析】由点P在圆外,易得到圆的直径为10-2,然后计算圆的半径即可.【详解】解:∵点P在圆外∴圆的直径为10-2=8∴圆的半径为4故答案为D.【点睛】本题考查了点与圆的位置关系,关键是根据题意确定圆的直径,是解答本题的关键.4、D【分析】用直接开平方法解方程,然后根据平方根的意义求得m的取值范围.【详解】解:∵关于的方程有实数根∴故选:D【点睛】本题考查直接开平方法解方程,注意负数没有平方根是本题的解题关键.5、B【分析】把配成顶点式,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式为:故选:B【点睛】考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6、C【分析】DE为△ABC的中位线,则DE∥BC,DE=BC,再证明△ODE∽△OCB,由相似三角形的性质即可得到结论.【详解】解:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴,故选:C.【点睛】本题考查了相似三角形的判定与性质,三角形中位线定理,熟练掌握相似三角形的性质定理是解题的关键.7、C【分析】根据勾股定理求出a,然后根据正弦的定义计算即可.【详解】解:根据勾股定理可得a=∴故选C.【点睛】此题考查的是勾股定理和求锐角三角函数值,掌握利用勾股定理解直角三角形和正弦的定义是解决此题的关键.8、B【分析】根据相似多边形的性质得到,即AF·BC=AB·AH①.然后根据IJ∥CD可得,,再结合以及矩形中的边相等可以得出IJ=AF=DE.最后根据S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE②,结合①②可得出结论.【详解】解:∵矩形ABCD∽矩形FAHG,,∴AF·BC=AB·AH,又IJ∥CD,∴,又DC=AB,BJ=AH,∴,∴IJ=AF=DE.S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE=AB·AH-DH·DE=(S矩形ABJH-S矩形HDEG).∴能求出△BIJ面积的条件是知道矩形ABJH和矩形HDEG的面积之差.故选:B.【点睛】本题考查了相似多边形的性质,矩形的性质等知识,正确的识别图形及运用相关性质是解题的关键.9、D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是=;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.10、B【分析】直接根据相似三角形的性质即可得出结论.【详解】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:1.故选:B.【点睛】本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.二、填空题(每小题3分,共24分)11、(4,)【分析】先求得F的坐标,然后根据等腰直角三角形的性质得出直线OA的解析式为y=x,根据反比例函数的对称性得出F关于直线OA的对称点是D点,即可求得D点的坐标.【详解】∵OC=AC=4,AC交反比例函数y=的图象于点F,∴F的纵坐标为4,代入y=求得x=,∴F(,4),∵等腰直角三角形AOC中,∠AOC=45°,∴直线OA的解析式为y=x,∴F关于直线OA的对称点是D点,∴点D的坐标为(4,),故答案为:(4,).【点睛】本题考查了反比例函数图象上点的坐标特征,等腰直角三角形的性质,反比例函数的对称性是解题的关键.12、.【分析】连接交于,根据已知条件可得出,点是的中点,再由垂径定理得出CE垂直平分,由此得出是等边三角形,又因为BC、AB分别是的切线,进而得出是等边三角形,利用角之间的关系,可得出,从而可得出OD的长.【详解】解:连接设交于.与相切于点,于..,..点是的中点;,,是的中点,垂直平分,,是等边三角形,,分别是的切线,,,是等边三角形,,,,的半径为.故答案为.【点睛】本题考查的知识点有圆的切线定理,垂径定理,以及等边三角形的性质等,解题的关键是结合题目作出辅助线.13、④【分析】利用图象信息一一判断即可解决问题.【详解】解:①由图可知,速度相同的情况下,小红比小兰提前停下来,时间花的短,故小红的运动路程比小兰的短,故本选项不符合题意;

②两人分别在1.09秒和7.49秒的时刻与点C距离相等,故本选项不符合题意;

③当小红运动到点D的时候,小兰也在点D,故本选项不符合题意;

④当小红运动到点O的时候,两人的距离正好等于⊙O的半径,此时t==4.84,故本选项正确;

故答案为:④.【点睛】本题考查动点问题函数图象、解题的关键是读懂图象信息,属于中考常考题型.14、【分析】利用因式分解法解得方程的两个根,即可得出另一个根的值.【详解】,变形为:,∴或,解得:;,∴一元二次方程的另一个根为:.故答案为:.【点睛】本题考查了解一元二次方程-因式分解法.15、;.【分析】由同弧所对的圆周角相等可得,可利用含对顶角的8字相似模型得到,由等弧所对的圆周角相等可得,在和含公共角,出现母子型相似模型.【详解】∵∠ADE=∠BCE,∠AED=∠CEB,∴;∵是的中点,∴,∴∠EAD=∠ABD,∠ADB公共,∴.综上:;.故答案为:;.【点睛】本题考查的知识点是相似三角形的判定和性质,圆周角定理,同弧或等弧所对的圆周角相等的应用是解题的关键.16、【分析】根据题意求得钢球到达斜面低端的速度是1.5t.然后由“平均速度时间t”列出关系式,再把s=18代入函数关系式即可求得相应的t的值.【详解】依题意得s=×t=t2,把s=18代入,得18=t2,解得t=,或t=-(舍去).故答案为【点睛】本题考查了一元二次方程的应用,根据实际问题列出二次函数关系式.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.17、﹣1【分析】根据题意,可以设出点C和点A的坐标,然后利用反比例函数的性质和菱形的性质即可求得k的值,本题得以解决.【详解】解:设点A的坐标为(a,0),点C的坐标为(c,),则﹣a•=6,点D的坐标为(,),∴,解得,k=﹣1,故答案为﹣1.【点睛】本题考查反比例函数系数的几何意义、反比例函数的性质、菱形的性质、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想解答.18、1【解析】根据关系式可知焰火的运行轨迹是一个开口向下的抛物线,已知焰火在升到最高时引爆,即到达抛物线的顶点时引爆,顶点横坐标就是从点火到引爆所需时间.则t==1s,故答案为1.三、解答题(共66分)19、(1)详见解析;(2);(3)1【分析】(1)先根据题意得出∠B=∠C,再根据等量代换得出∠ADB=∠DEC即可得证;(2)根据相似三角形的性质得出,将相应值代入化简即可得出答案;(3)根据相似三角形的性质得出,再根据已知即可证明AE=EC从而得出答案.【详解】解:(1)Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠B=∠C=45°,BC=∵∠ADE=45°,∴∠ADB+∠CDE=∠CDE+∠DEC=135°∴∠ADB=∠DEC,∴△ABD∽△DCE(2)∵△ABD∽△DCE,∴,∵BD=x,AE=y,则DC=,代入上式得:,∴,即(3),在中,【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握定理是解题的关键.20、(1);(1).【解析】(1)根据题意列函数关系式即可;

(1)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x-10-a)(-10x+500)=-10x1+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x=35+a,且0<a≤6,则30<35+a≤38,则当时,取得最大值,解方程得到a1=1,a1=58,于是得到a=1.【详解】解:(1)根据题意得,;(1)设每天扣除捐赠后可获得利润为元.对称轴为x=35+a,且0<a≤6,则30<35+a≤38,则当时,取得最大值,∴∴(不合题意舍去),∴.【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.21、(1)m<2;(2)【分析】(1)根据方程有两个不相等的实数根即可得到判别式大于1,由此得到答案;(2)根据根与系数的关系式及完全平方公式变形求出ab,再利用三角形的面积公式即可得到答案.【详解】(1)关于x的一元二次方程x2-2x+m-1=1有两个不相等的实数根,∴△>1,即△=4-4(m-1)>1,解得m<2;(2)∵Rt△ABC的斜边长c=,且两直角边a和b恰好是这个方程的两个根,∴a+b=2,a2+b2=()2=3,∴(a+b)2-2ab=3,∴4-2ab=3,∴ab=,∴Rt△ABC的面积=ab=.【点睛】此题考查一元二次方程的根的判别式,根与系数的关系式,直角三角形的勾股定理,完全平方式的变形,直角三角形面积的求法.22、【分析】在Rt△DEB和Rt△ACP中利用锐角三角函数来求出DE、AP的长,根据题意可知CE=BP,从而求出AB.【详解】解:如图,延长交过点平行于的直线于点,在中,在中,.则..答:的长度为.【点睛】本题考查的是利用锐角三角函数值求线段长.23、(1)200;(2)36;(3)补图见解析;(4)180名.【分析】(1)根据条形图可知喜欢阅读“小说”的有80人,根据在扇形图中所占比例得出调查学生总数;(2)根据条形图可知阅读“其他”的有20人,根据总人数可求出它在扇形图中所占比例;(3)求出第3组人数画出图形即可;(4)根据喜欢阅读“科普常识”的学生所占比例,即可估计该年级喜欢阅读“科普常识”的人数.【详解】解:(1)80÷40%=200(人),故这次活动一共调查了200名学生.(2)20÷200×360°=36°,故在扇形统计图中,“其他”所在扇形的圆心角等于36°.(3)200-80-40-20=60(人),即喜欢阅读“科普常识”的学生有60人,补全条形统计图如图所示:(4)60÷200×100%=30%,600×30%=180(人),故估计该年级喜欢阅读“科普常识”的人数为180.24、(1)y=+20(0≤x≤10);(2)能,理由见解析.【分析】(1)利用待定系数法假设函数的解析式,代入方程的点分别求出、、的值,即可求出当时,注意力指标数与时间的函数关系式.(2)根据函数解析式,我们可以求出学生在这这道题时,注意力的指标数都不低于1时x的值,然后和24进行比较,即可得到结论.【详解】(1)设时的抛物线为.由图象知抛物线过(0,20),(5,39),(10,48)三点,所以.解得所以(2)由图象知,当时,.当时,令,.解得:(舍去).当时,令,得,解得:因为,所以老师可以通过适当的安排,在学生的注意力指标数不低于1时,讲授完这道数学综合题.【点睛】本题考查了二次函数的应用,掌握待定系数法求解函数解析式是解题的关键.25、(1)详见解析;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论